1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338
// Copyright (C) 2019-2023 Aleo Systems Inc.
// This file is part of the snarkVM library.
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at:
// http://www.apache.org/licenses/LICENSE-2.0
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
use super::*;
use snarkvm_utilities::DeserializeExt;
pub struct BuildRequest<N: Network> {
program: Program<N>,
imports: Vec<Program<N>>,
function_name: Identifier<N>,
}
impl<N: Network> BuildRequest<N> {
/// Initializes a new build request.
pub const fn new(program: Program<N>, imports: Vec<Program<N>>, function_name: Identifier<N>) -> Self {
Self { program, imports, function_name }
}
/// Sends the request to the given endpoint.
pub fn send(&self, endpoint: &str) -> Result<BuildResponse<N>> {
Ok(ureq::get(endpoint).send_json(self)?.into_json()?)
}
/// Returns the program.
pub const fn program(&self) -> &Program<N> {
&self.program
}
/// Returns the imports.
pub const fn imports(&self) -> &Vec<Program<N>> {
&self.imports
}
/// Returns the function name.
pub const fn function_name(&self) -> &Identifier<N> {
&self.function_name
}
}
impl<N: Network> Serialize for BuildRequest<N> {
/// Serializes the build request into string or bytes.
fn serialize<S: Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> {
let mut request = serializer.serialize_struct("BuildRequest", 3)?;
request.serialize_field("program", &self.program)?;
request.serialize_field("imports", &self.imports)?;
request.serialize_field("function_name", &self.function_name)?;
request.end()
}
}
impl<'de, N: Network> Deserialize<'de> for BuildRequest<N> {
/// Deserializes the build request from a string or bytes.
fn deserialize<D: Deserializer<'de>>(deserializer: D) -> Result<Self, D::Error> {
// Parse the request from a string into a value.
let mut request = serde_json::Value::deserialize(deserializer)?;
// Recover the leaf.
Ok(Self::new(
// Retrieve the program.
DeserializeExt::take_from_value::<D>(&mut request, "program")?,
// Retrieve the imports.
DeserializeExt::take_from_value::<D>(&mut request, "imports")?,
// Retrieve the function name.
DeserializeExt::take_from_value::<D>(&mut request, "function_name")?,
))
}
}
pub struct BuildResponse<N: Network> {
program_id: ProgramID<N>,
function_name: Identifier<N>,
proving_key: ProvingKey<N>,
verifying_key: VerifyingKey<N>,
}
impl<N: Network> BuildResponse<N> {
/// Initializes a new build response.
pub const fn new(
program_id: ProgramID<N>,
function_name: Identifier<N>,
proving_key: ProvingKey<N>,
verifying_key: VerifyingKey<N>,
) -> Self {
Self { program_id, function_name, proving_key, verifying_key }
}
/// Returns the program ID.
pub const fn program_id(&self) -> &ProgramID<N> {
&self.program_id
}
/// Returns the function name.
pub const fn function_name(&self) -> &Identifier<N> {
&self.function_name
}
/// Returns the proving key.
pub const fn proving_key(&self) -> &ProvingKey<N> {
&self.proving_key
}
/// Returns the verifying key.
pub const fn verifying_key(&self) -> &VerifyingKey<N> {
&self.verifying_key
}
}
impl<N: Network> Serialize for BuildResponse<N> {
/// Serializes the build response into string or bytes.
fn serialize<S: Serializer>(&self, serializer: S) -> Result<S::Ok, S::Error> {
let mut response = serializer.serialize_struct("BuildResponse", 4)?;
response.serialize_field("program_id", &self.program_id)?;
response.serialize_field("function_name", &self.function_name)?;
response.serialize_field("proving_key", &self.proving_key)?;
response.serialize_field("verifying_key", &self.verifying_key)?;
response.end()
}
}
impl<'de, N: Network> Deserialize<'de> for BuildResponse<N> {
/// Deserializes the build response from a string or bytes.
fn deserialize<D: Deserializer<'de>>(deserializer: D) -> Result<Self, D::Error> {
// Parse the response from a string into a value.
let mut response = serde_json::Value::deserialize(deserializer)?;
// Recover the leaf.
Ok(Self::new(
// Retrieve the program ID.
DeserializeExt::take_from_value::<D>(&mut response, "program_id")?,
// Retrieve the function name.
DeserializeExt::take_from_value::<D>(&mut response, "function_name")?,
// Retrieve the proving key.
DeserializeExt::take_from_value::<D>(&mut response, "proving_key")?,
// Retrieve the verifying key.
DeserializeExt::take_from_value::<D>(&mut response, "verifying_key")?,
))
}
}
impl<N: Network> Package<N> {
/// Builds the package.
pub fn build<A: crate::circuit::Aleo<Network = N, BaseField = N::Field>>(
&self,
endpoint: Option<String>,
) -> Result<()> {
// Skip the 'build' if the program is already built.
if !self.is_build_required::<A>() {
return Ok(());
}
// Retrieve the main program.
let program = self.program();
// Retrieve the program ID.
let program_id = program.id();
#[cfg(feature = "aleo-cli")]
println!("⏳ Compiling '{}'...\n", program_id.to_string().bold());
// Prepare the build directory.
let build_directory = self.build_directory();
// Create the build directory if it does not exist.
if !build_directory.exists() {
std::fs::create_dir_all(&build_directory)?;
}
// Construct the process.
let process = self.get_process()?;
// Retrieve the imported programs.
let imported_programs = program
.imports()
.keys()
.map(|program_id| process.get_program(program_id).cloned())
.collect::<Result<Vec<_>>>()?;
// Synthesize each proving and verifying key.
for function_name in program.functions().keys() {
match endpoint {
Some(ref endpoint) => {
// Prepare the request.
let request = BuildRequest::new(program.clone(), imported_programs.clone(), *function_name);
// Load the proving and verifying key.
let response = request.send(endpoint)?;
// Ensure the program ID matches.
ensure!(
response.program_id() == program_id,
"Program ID mismatch: {} != {program_id}",
response.program_id()
);
// Ensure the function name matches.
ensure!(
response.function_name() == function_name,
"Function name mismatch: {} != {function_name}",
response.function_name()
);
// Insert the proving key.
process.insert_proving_key(response.program_id(), function_name, response.proving_key().clone())?;
// Insert the verifying key.
process.insert_verifying_key(
response.program_id(),
function_name,
response.verifying_key().clone(),
)?;
}
None => process.synthesize_key::<A, _>(program_id, function_name, &mut rand::thread_rng())?,
}
}
// Load each function circuit.
for function_name in program.functions().keys() {
// Retrieve the program.
let program = process.get_program(program_id)?;
// Retrieve the function from the program.
let function = program.get_function(function_name)?;
// Save all the prover and verifier files for any function calls that are made.
for instruction in function.instructions() {
if let Instruction::Call(call) = instruction {
// Retrieve the program and resource.
let (program, resource) = match call.operator() {
CallOperator::Locator(locator) => {
(process.get_program(locator.program_id())?, locator.resource())
}
CallOperator::Resource(resource) => (program, resource),
};
// If this is a function call, save its corresponding prover and verifier files.
if program.contains_function(resource) {
// Set the function name to the resource, in this scope.
let function_name = resource;
// Retrieve the proving key.
let proving_key = process.get_proving_key(program.id(), resource)?;
// Retrieve the verifying key.
let verifying_key = process.get_verifying_key(program.id(), resource)?;
// Prepare the build directory for the imported program.
let import_build_directory =
self.build_directory().join(format!("{}-{}", program.id().name(), program.id().network()));
// Create the build directory if it does not exist.
if !import_build_directory.exists() {
std::fs::create_dir_all(&import_build_directory)?;
}
// Create the prover.
let _prover = ProverFile::create(&import_build_directory, function_name, proving_key)?;
// Create the verifier.
let _verifier = VerifierFile::create(&import_build_directory, function_name, verifying_key)?;
}
}
}
// Retrieve the proving key.
let proving_key = process.get_proving_key(program_id, function_name)?;
// Retrieve the verifying key.
let verifying_key = process.get_verifying_key(program_id, function_name)?;
// Create the prover.
let _prover = ProverFile::create(&build_directory, function_name, proving_key)?;
// Create the verifier.
let _verifier = VerifierFile::create(&build_directory, function_name, verifying_key)?;
}
// Lastly, write the AVM file.
let _avm_file = AVMFile::create(&build_directory, program.clone(), true)?;
// Ensure the build directory exists.
if !self.build_directory().exists() {
bail!("Build directory does not exist: {}", self.build_directory().display());
}
#[cfg(feature = "aleo-cli")]
println!();
Ok(())
}
}
#[cfg(test)]
mod tests {
type CurrentAleo = snarkvm_circuit::network::AleoV0;
#[test]
fn test_build() {
// Samples a new package at a temporary directory.
let (directory, package) = crate::package::test_helpers::sample_token_package();
// Ensure the build directory does *not* exist.
assert!(!package.build_directory().exists());
// Build the package.
package.build::<CurrentAleo>(None).unwrap();
// Ensure the build directory exists.
assert!(package.build_directory().exists());
// Proactively remove the temporary directory (to conserve space).
std::fs::remove_dir_all(directory).unwrap();
}
#[test]
fn test_build_with_import() {
// Samples a new package at a temporary directory.
let (directory, package) = crate::package::test_helpers::sample_wallet_package();
// Ensure the build directory does *not* exist.
assert!(!package.build_directory().exists());
// Build the package.
package.build::<CurrentAleo>(None).unwrap();
// Ensure the build directory exists.
assert!(package.build_directory().exists());
// Proactively remove the temporary directory (to conserve space).
std::fs::remove_dir_all(directory).unwrap();
}
#[test]
#[ignore]
fn test_build_with_import_credits() {
// Samples a new package at a temporary directory.
let (directory, package) = crate::package::test_helpers::sample_transfer_package();
// Ensure the build directory does *not* exist.
assert!(!package.build_directory().exists());
// Build the package.
package.build::<CurrentAleo>(None).unwrap();
// Ensure the build directory exists.
assert!(package.build_directory().exists());
// Proactively remove the temporary directory (to conserve space).
std::fs::remove_dir_all(directory).unwrap();
}
}