1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125
// Copyright (C) 2019-2023 Aleo Systems Inc.
// This file is part of the snarkVM library.
// The snarkVM library is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// The snarkVM library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with the snarkVM library. If not, see <https://www.gnu.org/licenses/>.
use super::*;
impl<E: Environment, I: IntegerType> ToFields for Integer<E, I> {
type Field = Field<E>;
/// Returns the integer as field elements.
fn to_fields(&self) -> Result<Vec<Self::Field>> {
Ok(vec![self.to_field()?])
}
}
#[cfg(test)]
mod tests {
use super::*;
use snarkvm_console_network_environment::Console;
type CurrentEnvironment = Console;
const ITERATIONS: u64 = 10_000;
fn check_to_fields<I: IntegerType>() -> Result<()> {
let mut rng = TestRng::default();
for _ in 0..ITERATIONS {
// Sample a random integer.
let expected = Integer::<CurrentEnvironment, I>::rand(&mut rng);
// Perform the operation.
let candidate = expected.to_fields()?;
// Extract the bits from the base field representation.
let candidate_bits_le = candidate.to_bits_le();
assert_eq!(Field::<CurrentEnvironment>::size_in_bits(), candidate_bits_le.len());
// Ensure all integer bits match with the expected result.
let i_bits = usize::try_from(I::BITS).unwrap();
let expected_bits = expected.to_bits_le();
for (expected_bit, candidate_bit) in expected_bits.iter().zip_eq(&candidate_bits_le[0..i_bits]) {
assert_eq!(expected_bit, candidate_bit);
}
// Ensure all remaining bits are 0.
for candidate_bit in &candidate_bits_le[i_bits..] {
assert!(!candidate_bit);
}
}
Ok(())
}
#[test]
fn test_u8_to_fields() -> Result<()> {
type I = u8;
check_to_fields::<I>()
}
#[test]
fn test_i8_to_fields() -> Result<()> {
type I = i8;
check_to_fields::<I>()
}
#[test]
fn test_u16_to_fields() -> Result<()> {
type I = u16;
check_to_fields::<I>()
}
#[test]
fn test_i16_to_fields() -> Result<()> {
type I = i16;
check_to_fields::<I>()
}
#[test]
fn test_u32_to_fields() -> Result<()> {
type I = u32;
check_to_fields::<I>()
}
#[test]
fn test_i32_to_fields() -> Result<()> {
type I = i32;
check_to_fields::<I>()
}
#[test]
fn test_u64_to_fields() -> Result<()> {
type I = u64;
check_to_fields::<I>()
}
#[test]
fn test_i64_to_fields() -> Result<()> {
type I = i64;
check_to_fields::<I>()
}
#[test]
fn test_u128_to_fields() -> Result<()> {
type I = u128;
check_to_fields::<I>()
}
#[test]
fn test_i128_to_fields() -> Result<()> {
type I = i128;
check_to_fields::<I>()
}
}