1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
// Copyright (C) 2019-2022 Aleo Systems Inc.
// This file is part of the snarkVM library.

// The snarkVM library is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// The snarkVM library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with the snarkVM library. If not, see <https://www.gnu.org/licenses/>.

use super::*;

impl<N: Network> Request<N> {
    /// Returns the request for a given private key, program ID, function name, inputs, input types, and RNG, where:
    ///     challenge := HashToScalar(r * G, pk_sig, pr_sig, caller, \[tvk, tcm, function ID, input IDs\])
    ///     response := r - challenge * sk_sig
    pub fn sign<R: Rng + CryptoRng>(
        private_key: &PrivateKey<N>,
        program_id: ProgramID<N>,
        function_name: Identifier<N>,
        inputs: &[Value<N>],
        input_types: &[ValueType<N>],
        rng: &mut R,
    ) -> Result<Self> {
        // Ensure the number of inputs matches the number of input types.
        if input_types.len() != inputs.len() {
            bail!(
                "Function '{}' in the program '{}' expects {} inputs, but {} were provided.",
                function_name,
                program_id,
                input_types.len(),
                inputs.len()
            )
        }

        // Retrieve `sk_sig`.
        let sk_sig = private_key.sk_sig();

        // Derive the view key.
        let view_key = ViewKey::try_from(private_key)?;
        // Derive `sk_tag` from the graph key.
        let sk_tag = GraphKey::try_from(view_key)?.sk_tag();

        // Derive the compute key.
        let compute_key = ComputeKey::try_from(private_key)?;
        // Retrieve `pk_sig`.
        let pk_sig = compute_key.pk_sig();
        // Retrieve `pr_sig`.
        let pr_sig = compute_key.pr_sig();

        // Sample a random nonce.
        let nonce = Field::<N>::rand(rng);
        // Compute a `r` as `HashToScalar(sk_sig || nonce)`. Note: This is the transition secret key `tsk`.
        let r = N::hash_to_scalar_psd4(&[N::serial_number_domain(), sk_sig.to_field()?, nonce])?;
        // Compute `g_r` as `r * G`. Note: This is the transition public key `tpk`.
        let g_r = N::g_scalar_multiply(&r);

        // Derive the caller from the compute key.
        let caller = Address::try_from(compute_key)?;
        // Compute the transition view key `tvk` as `r * caller`.
        let tvk = (*caller * r).to_x_coordinate();
        // Compute the transition commitment `tcm` as `Hash(tvk)`.
        let tcm = N::hash_psd2(&[tvk])?;

        // Compute the function ID as `Hash(network_id, program_id, function_name)`.
        let function_id = N::hash_bhp1024(
            &(U16::<N>::new(N::ID), program_id.name(), program_id.network(), function_name).to_bits_le(),
        )?;

        // Construct the hash input as `(r * G, pk_sig, pr_sig, caller, [tvk, tcm, function ID, input IDs])`.
        let mut message = Vec::with_capacity(5 + 2 * inputs.len());
        message.extend([g_r, pk_sig, pr_sig, *caller].map(|point| point.to_x_coordinate()));
        message.extend([tvk, tcm, function_id]);

        // Initialize a vector to store the input IDs.
        let mut input_ids = Vec::with_capacity(inputs.len());

        // Prepare the inputs.
        for (index, (input, input_type)) in inputs.iter().zip_eq(input_types).enumerate() {
            match input_type {
                // A constant input is hashed (using `tcm`) to a field element.
                ValueType::Constant(..) => {
                    // Ensure the input is a plaintext.
                    ensure!(matches!(input, Value::Plaintext(..)), "Expected a plaintext input");

                    // Construct the (console) input index as a field element.
                    let index = Field::from_u16(u16::try_from(index).or_halt_with::<N>("Input index exceeds u16"));
                    // Construct the preimage as `(function ID || input || tcm || index)`.
                    let mut preimage = vec![function_id];
                    preimage.extend(input.to_fields()?);
                    preimage.push(tcm);
                    preimage.push(index);
                    // Hash the input to a field element.
                    let input_hash = N::hash_psd8(&preimage)?;

                    // Add the input hash to the preimage.
                    message.push(input_hash);
                    // Add the input ID to the inputs.
                    input_ids.push(InputID::Constant(input_hash));
                }
                // A public input is hashed (using `tcm`) to a field element.
                ValueType::Public(..) => {
                    // Ensure the input is a plaintext.
                    ensure!(matches!(input, Value::Plaintext(..)), "Expected a plaintext input");

                    // Construct the (console) input index as a field element.
                    let index = Field::from_u16(u16::try_from(index).or_halt_with::<N>("Input index exceeds u16"));
                    // Construct the preimage as `(function ID || input || tcm || index)`.
                    let mut preimage = vec![function_id];
                    preimage.extend(input.to_fields()?);
                    preimage.push(tcm);
                    preimage.push(index);
                    // Hash the input to a field element.
                    let input_hash = N::hash_psd8(&preimage)?;

                    // Add the input hash to the preimage.
                    message.push(input_hash);
                    // Add the input ID to the inputs.
                    input_ids.push(InputID::Public(input_hash));
                }
                // A private input is encrypted (using `tvk`) and hashed to a field element.
                ValueType::Private(..) => {
                    // Ensure the input is a plaintext.
                    ensure!(matches!(input, Value::Plaintext(..)), "Expected a plaintext input");

                    // Construct the (console) input index as a field element.
                    let index = Field::from_u16(u16::try_from(index).or_halt_with::<N>("Input index exceeds u16"));
                    // Compute the input view key as `Hash(function ID || tvk || index)`.
                    let input_view_key = N::hash_psd4(&[function_id, tvk, index])?;
                    // Compute the ciphertext.
                    let ciphertext = match &input {
                        Value::Plaintext(plaintext) => plaintext.encrypt_symmetric(input_view_key)?,
                        // Ensure the input is a plaintext.
                        Value::Record(..) => bail!("Expected a plaintext input, found a record input"),
                    };
                    // Hash the ciphertext to a field element.
                    let input_hash = N::hash_psd8(&ciphertext.to_fields()?)?;

                    // Add the input hash to the preimage.
                    message.push(input_hash);
                    // Add the input hash to the inputs.
                    input_ids.push(InputID::Private(input_hash));
                }
                // A record input is computed to its serial number.
                ValueType::Record(record_name) => {
                    // Retrieve the record.
                    let record = match &input {
                        Value::Record(record) => record,
                        // Ensure the input is a record.
                        Value::Plaintext(..) => bail!("Expected a record input, found a plaintext input"),
                    };

                    // Compute the record commitment.
                    let commitment = record.to_commitment(&program_id, record_name)?;
                    // Ensure the record belongs to the caller.
                    ensure!(**record.owner() == caller, "Input record for '{program_id}' must belong to the signer");
                    // Ensure the record gates is less than or equal to 2^52.
                    if !(**record.gates()).to_bits_le()[52..].iter().all(|bit| !bit) {
                        bail!("Input record contains an invalid Aleo balance (in gates): {}", record.gates());
                    }

                    // Compute the generator `H` as `HashToGroup(commitment)`.
                    let h = N::hash_to_group_psd2(&[N::serial_number_domain(), commitment])?;
                    // Compute `h_r` as `r * H`.
                    let h_r = h * r;
                    // Compute `gamma` as `sk_sig * H`.
                    let gamma = h * sk_sig;

                    // Compute the `serial_number` from `gamma`.
                    let serial_number = Record::<N, Plaintext<N>>::serial_number_from_gamma(&gamma, commitment)?;
                    // Compute the tag.
                    let tag = Record::<N, Plaintext<N>>::tag(sk_tag, commitment)?;

                    // Add (`H`, `r * H`, `gamma`, `tag`) to the preimage.
                    message.extend([h, h_r, gamma].iter().map(|point| point.to_x_coordinate()));
                    message.push(tag);

                    // Add the input ID.
                    input_ids.push(InputID::Record(commitment, gamma, serial_number, tag));
                }
                // An external record input is hashed (using `tvk`) to a field element.
                ValueType::ExternalRecord(..) => {
                    // Ensure the input is a record.
                    ensure!(matches!(input, Value::Record(..)), "Expected a record input");

                    // Construct the (console) input index as a field element.
                    let index = Field::from_u16(u16::try_from(index).or_halt_with::<N>("Input index exceeds u16"));
                    // Construct the preimage as `(function ID || input || tvk || index)`.
                    let mut preimage = vec![function_id];
                    preimage.extend(input.to_fields()?);
                    preimage.push(tvk);
                    preimage.push(index);
                    // Hash the input to a field element.
                    let input_hash = N::hash_psd8(&preimage)?;

                    // Add the input hash to the preimage.
                    message.push(input_hash);
                    // Add the input hash to the inputs.
                    input_ids.push(InputID::ExternalRecord(input_hash));
                }
            }
        }

        // Compute `challenge` as `HashToScalar(r * G, pk_sig, pr_sig, caller, [tvk, tcm, function ID, input IDs])`.
        let challenge = N::hash_to_scalar_psd8(&message)?;
        // Compute `response` as `r - challenge * sk_sig`.
        let response = r - challenge * sk_sig;

        Ok(Self {
            caller,
            network_id: U16::new(N::ID),
            program_id,
            function_name,
            input_ids,
            inputs: inputs.to_vec(),
            signature: Signature::from((challenge, response, compute_key)),
            sk_tag,
            tvk,
            tsk: r,
            tcm,
        })
    }
}