1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
use super::*;
impl<E: Environment> Elligator2<E> {
pub fn encode(input: &Field<E>) -> Result<(Group<E>, bool)> {
let (encoding, sign_high) = Self::encode_without_cofactor_clear(input)?;
let group = encoding.mul_by_cofactor().to_affine();
ensure!(group.is_on_curve(), "Elligator2 failed: element is not on curve");
ensure!(group.is_in_correct_subgroup_assuming_on_curve(), "Elligator2 failed: element in incorrect subgroup");
Ok((Group::new(group), sign_high))
}
pub(crate) fn encode_without_cofactor_clear(input: &Field<E>) -> Result<(Group<E>, bool)> {
ensure!(
Group::<E>::EDWARDS_D.legendre().is_qnr(),
"D on the twisted Edwards curve must be a quadratic nonresidue"
);
ensure!(!input.is_zero(), "Inputs to Elligator2 must be nonzero (inverses will fail)");
let one = Field::<E>::one();
let sign_high = input > &input.neg();
let (u, v) = {
let (a, b) = match Group::<E>::MONTGOMERY_B.inverse() {
Ok(b_inverse) => (Group::MONTGOMERY_A * b_inverse, b_inverse.square()),
Err(_) => bail!("Montgomery B must be invertible in order to use Elligator2"),
};
let (u, r) = (Group::EDWARDS_D, input);
let ur2 = u * r.square();
ensure!(a.square() * ur2 != b * (one + ur2).square(), "Elligator2 failed: A^2 * ur^2 == B(1 + ur^2)^2");
let v = -a * (one + ur2).inverse().map_err(|_| anyhow!("Elligator2 failed: (1 + ur^2) == 0"))?;
ensure!(!v.is_zero(), "Elligator2 failed: v == 0");
let v2 = v.square();
let e = ((v2 * v) + (a * v2) + (b * v)).legendre();
ensure!(!e.is_zero(), "Elligator2 failed: e == 0");
let x = match e {
LegendreSymbol::Zero => -a * Field::<E>::half(),
LegendreSymbol::QuadraticResidue => v,
LegendreSymbol::QuadraticNonResidue => -v - a,
};
ensure!(!x.is_zero(), "Elligator2 failed: x == 0");
let x2 = x.square();
let rhs = (x2 * x) + (a * x2) + (b * x);
let value = rhs.square_root().map_err(|_| anyhow!("Elligator2 failed: sqrt(x^3 + Ax^2 + Bx) failed"))?;
let y = match e {
LegendreSymbol::Zero => Field::<E>::zero(),
LegendreSymbol::QuadraticResidue => -value,
LegendreSymbol::QuadraticNonResidue => value,
};
ensure!(!y.is_zero(), "Elligator2 failed: y == 0");
ensure!(y.square() == rhs, "Elligator2 failed: y^2 != x^3 + A * x^2 + B * x");
let u = x * Group::MONTGOMERY_B;
let v = y * Group::MONTGOMERY_B;
let u2 = u.square();
ensure!(
Group::MONTGOMERY_B * v.square() == (u2 * u) + (Group::MONTGOMERY_A * u2) + u,
"Elligator2 failed: B * v^2 != u^3 + A * u^2 + u"
);
(u, v)
};
let x = u * v.inverse().map_err(|_| anyhow!("Elligator2 failed: v == 0"))?;
let y = (u - one) * (u + one).inverse().map_err(|_| anyhow!("Elligator2 failed: (u + 1) == 0"))?;
let point = Group::from_xy_coordinates_unchecked(x, y);
ensure!(point.to_affine().is_on_curve(), "Elligator2 failed: point is not on the curve");
Ok((point, sign_high))
}
}