1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
// Copyright (C) 2019-2023 Aleo Systems Inc.
// This file is part of the snarkVM library.

// The snarkVM library is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// The snarkVM library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with the snarkVM library. If not, see <https://www.gnu.org/licenses/>.

mod hash_uncompressed;

use crate::Blake2Xs;
use snarkvm_console_types::prelude::*;
use snarkvm_utilities::BigInteger;

use std::sync::Arc;

/// The BHP chunk size (this implementation is for a 3-bit BHP).
pub(super) const BHP_CHUNK_SIZE: usize = 3;
pub(super) const BHP_LOOKUP_SIZE: usize = 1 << BHP_CHUNK_SIZE;

/// BHP is a collision-resistant hash function that takes a variable-length input.
/// The BHP hasher is used to process one internal iteration of the BHP hash function.
#[derive(Clone)]
pub struct BHPHasher<E: Environment, const NUM_WINDOWS: u8, const WINDOW_SIZE: u8> {
    /// The bases for the BHP hash.
    bases: Arc<Vec<Vec<Group<E>>>>,
    /// The bases lookup table for the BHP hash.
    bases_lookup: Arc<Vec<Vec<[Group<E>; BHP_LOOKUP_SIZE]>>>,
    /// The random base for the BHP commitment.
    random_base: Arc<Vec<Group<E>>>,
}

impl<E: Environment, const NUM_WINDOWS: u8, const WINDOW_SIZE: u8> BHPHasher<E, NUM_WINDOWS, WINDOW_SIZE> {
    /// The maximum number of input bits.
    const MAX_BITS: usize = NUM_WINDOWS as usize * WINDOW_SIZE as usize * BHP_CHUNK_SIZE;
    /// The minimum number of input bits (at least one window).
    const MIN_BITS: usize = WINDOW_SIZE as usize * BHP_CHUNK_SIZE;

    /// Initializes a new instance of BHP with the given domain.
    pub fn setup(domain: &str) -> Result<Self> {
        // Calculate the maximum window size.
        let mut maximum_window_size = 0;
        let mut range = E::BigInteger::from(2_u64);
        while range < E::Scalar::modulus_minus_one_div_two() {
            // range < (p-1)/2
            range.muln(4); // range * 2^4
            maximum_window_size += 1;
        }
        ensure!(WINDOW_SIZE <= maximum_window_size, "The maximum BHP window size is {maximum_window_size}");

        // Compute the bases.
        let bases = (0..NUM_WINDOWS)
            .map(|index| {
                // Construct an indexed message to attempt to sample a base.
                let (generator, _, _) = Blake2Xs::hash_to_curve::<E::Affine>(&format!(
                    "Aleo.BHP.{NUM_WINDOWS}.{WINDOW_SIZE}.{domain}.{index}"
                ));
                let mut base = Group::<E>::new(generator);
                // Compute the generators for the sampled base.
                let mut powers = Vec::with_capacity(WINDOW_SIZE as usize);
                for _ in 0..WINDOW_SIZE {
                    powers.push(base);
                    for _ in 0..4 {
                        base = base.double();
                    }
                }
                powers
            })
            .collect::<Vec<Vec<Group<E>>>>();
        ensure!(bases.len() == NUM_WINDOWS as usize, "Incorrect number of BHP windows ({})", bases.len());
        for window in &bases {
            ensure!(window.len() == WINDOW_SIZE as usize, "Incorrect BHP window size ({})", window.len());
        }

        // Compute the bases lookup.
        let bases_lookup = bases
            .iter()
            .map(|x| {
                x.iter()
                    .map(|g| {
                        let mut lookup = [Group::<E>::zero(); BHP_LOOKUP_SIZE];
                        for (i, element) in lookup.iter_mut().enumerate().take(BHP_LOOKUP_SIZE) {
                            *element = *g;
                            if (i & 0x01) != 0 {
                                *element += g;
                            }
                            if (i & 0x02) != 0 {
                                *element += g.double();
                            }
                            if (i & 0x04) != 0 {
                                *element = element.neg();
                            }
                        }
                        lookup
                    })
                    .collect()
            })
            .collect::<Vec<Vec<[Group<E>; BHP_LOOKUP_SIZE]>>>();
        ensure!(bases_lookup.len() == NUM_WINDOWS as usize, "Incorrect number of BHP lookups ({})", bases_lookup.len());
        for window in &bases_lookup {
            ensure!(window.len() == WINDOW_SIZE as usize, "Incorrect BHP lookup window size ({})", window.len());
        }

        // Next, compute the random base.
        let (generator, _, _) =
            Blake2Xs::hash_to_curve::<E::Affine>(&format!("Aleo.BHP.{NUM_WINDOWS}.{WINDOW_SIZE}.{domain}.Randomizer"));
        let mut base_power = Group::<E>::new(generator);
        let mut random_base = Vec::with_capacity(Scalar::<E>::size_in_bits());
        for _ in 0..Scalar::<E>::size_in_bits() {
            random_base.push(base_power);
            base_power = base_power.double();
        }
        ensure!(
            random_base.len() == Scalar::<E>::size_in_bits(),
            "Incorrect number of BHP random base powers ({})",
            random_base.len()
        );

        Ok(Self { bases: Arc::new(bases), bases_lookup: Arc::new(bases_lookup), random_base: Arc::new(random_base) })
    }

    /// Returns the bases.
    pub fn bases(&self) -> &Arc<Vec<Vec<Group<E>>>> {
        &self.bases
    }

    /// Returns the random base window.
    pub fn random_base(&self) -> &Arc<Vec<Group<E>>> {
        &self.random_base
    }
}