1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
// Copyright (C) 2019-2022 Aleo Systems Inc.
// This file is part of the snarkVM library.

// The snarkVM library is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// The snarkVM library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with the snarkVM library. If not, see <https://www.gnu.org/licenses/>.

use crate::{Opcode, Operand, Registers, Stack};
use console::{
    network::prelude::*,
    program::{Literal, LiteralType, Plaintext, PlaintextType, Register, RegisterType, Value},
};

/// BHP256 is a collision-resistant function that processes inputs in 256-bit chunks.
pub type CommitBHP256<N> = CommitInstruction<N, { Committer::BHP256 as u8 }>;
/// BHP512 is a collision-resistant function that processes inputs in 512-bit chunks.
pub type CommitBHP512<N> = CommitInstruction<N, { Committer::BHP512 as u8 }>;
/// BHP768 is a collision-resistant function that processes inputs in 768-bit chunks.
pub type CommitBHP768<N> = CommitInstruction<N, { Committer::BHP768 as u8 }>;
/// BHP1024 is a collision-resistant function that processes inputs in 1024-bit chunks.
pub type CommitBHP1024<N> = CommitInstruction<N, { Committer::BHP1024 as u8 }>;

/// Pedersen64 is a collision-resistant function that processes inputs in 64-bit chunks.
pub type CommitPED64<N> = CommitInstruction<N, { Committer::PED64 as u8 }>;
/// Pedersen128 is a collision-resistant function that processes inputs in 128-bit chunks.
pub type CommitPED128<N> = CommitInstruction<N, { Committer::PED128 as u8 }>;

enum Committer {
    BHP256,
    BHP512,
    BHP768,
    BHP1024,
    PED64,
    PED128,
}

/// Commits the operand into the declared type.
#[derive(Clone, PartialEq, Eq, Hash)]
pub struct CommitInstruction<N: Network, const VARIANT: u8> {
    /// The operand as `input`.
    operands: Vec<Operand<N>>,
    /// The destination register.
    destination: Register<N>,
}

impl<N: Network, const VARIANT: u8> CommitInstruction<N, VARIANT> {
    /// Returns the opcode.
    #[inline]
    pub const fn opcode() -> Opcode {
        match VARIANT {
            0 => Opcode::Commit("commit.bhp256"),
            1 => Opcode::Commit("commit.bhp512"),
            2 => Opcode::Commit("commit.bhp768"),
            3 => Opcode::Commit("commit.bhp1024"),
            4 => Opcode::Commit("commit.ped64"),
            5 => Opcode::Commit("commit.ped128"),
            _ => panic!("Invalid 'commit' instruction opcode"),
        }
    }

    /// Returns the operands in the operation.
    #[inline]
    pub fn operands(&self) -> &[Operand<N>] {
        // Sanity check that the operands is exactly two inputs.
        debug_assert!(self.operands.len() == 2, "Commit operations must have two operands");
        // Return the operands.
        &self.operands
    }

    /// Returns the destination register.
    #[inline]
    pub fn destinations(&self) -> Vec<Register<N>> {
        vec![self.destination.clone()]
    }
}

impl<N: Network, const VARIANT: u8> CommitInstruction<N, VARIANT> {
    /// Evaluates the instruction.
    #[inline]
    pub fn evaluate<A: circuit::Aleo<Network = N>>(
        &self,
        stack: &Stack<N>,
        registers: &mut Registers<N, A>,
    ) -> Result<()> {
        // Ensure the number of operands is correct.
        if self.operands.len() != 2 {
            bail!("Instruction '{}' expects 2 operands, found {} operands", Self::opcode(), self.operands.len())
        }

        // Load the operands values.
        let inputs: Vec<_> = self.operands.iter().map(|operand| registers.load(stack, operand)).try_collect()?;
        // Retrieve the input and randomizer.
        let (input, randomizer) = (inputs[0].clone(), inputs[1].clone());
        // Retrieve the randomizer.
        let randomizer = match randomizer {
            Value::Plaintext(Plaintext::Literal(Literal::Scalar(randomizer), ..)) => randomizer,
            _ => bail!("Invalid randomizer type for the commit evaluation, expected a scalar"),
        };

        // Commit the input.
        let output = match VARIANT {
            0 => Literal::Field(N::commit_bhp256(&input.to_bits_le(), &randomizer)?),
            1 => Literal::Field(N::commit_bhp512(&input.to_bits_le(), &randomizer)?),
            2 => Literal::Field(N::commit_bhp768(&input.to_bits_le(), &randomizer)?),
            3 => Literal::Field(N::commit_bhp1024(&input.to_bits_le(), &randomizer)?),
            4 => Literal::Group(N::commit_ped64(&input.to_bits_le(), &randomizer)?),
            5 => Literal::Group(N::commit_ped128(&input.to_bits_le(), &randomizer)?),
            _ => bail!("Invalid 'commit' variant: {VARIANT}"),
        };
        // Store the output.
        registers.store(stack, &self.destination, Value::Plaintext(Plaintext::from(output)))
    }

    /// Executes the instruction.
    #[inline]
    pub fn execute<A: circuit::Aleo<Network = N>>(
        &self,
        stack: &Stack<N>,
        registers: &mut Registers<N, A>,
    ) -> Result<()> {
        use circuit::ToBits;

        // Ensure the number of operands is correct.
        if self.operands.len() != 2 {
            bail!("Instruction '{}' expects 2 operands, found {} operands", Self::opcode(), self.operands.len())
        }

        // Load the operands values.
        let inputs: Vec<_> =
            self.operands.iter().map(|operand| registers.load_circuit(stack, operand)).try_collect()?;
        // Retrieve the input and randomizer.
        let (input, randomizer) = (inputs[0].clone(), inputs[1].clone());
        // Retrieve the randomizer.
        let randomizer = match randomizer {
            circuit::Value::Plaintext(circuit::Plaintext::Literal(circuit::Literal::Scalar(randomizer), ..)) => {
                randomizer
            }
            _ => bail!("Invalid randomizer type for the commit execution, expected a scalar"),
        };

        // Commits the input.
        let output = match VARIANT {
            0 => circuit::Literal::Field(A::commit_bhp256(&input.to_bits_le(), &randomizer)),
            1 => circuit::Literal::Field(A::commit_bhp512(&input.to_bits_le(), &randomizer)),
            2 => circuit::Literal::Field(A::commit_bhp768(&input.to_bits_le(), &randomizer)),
            3 => circuit::Literal::Field(A::commit_bhp1024(&input.to_bits_le(), &randomizer)),
            4 => circuit::Literal::Group(A::commit_ped64(&input.to_bits_le(), &randomizer)),
            5 => circuit::Literal::Group(A::commit_ped128(&input.to_bits_le(), &randomizer)),
            _ => bail!("Invalid 'commit' variant: {VARIANT}"),
        };
        // Convert the output to a stack value.
        let output = circuit::Value::Plaintext(circuit::Plaintext::Literal(output, Default::default()));
        // Store the output.
        registers.store_circuit(stack, &self.destination, output)
    }

    /// Returns the output type from the given program and input types.
    #[inline]
    pub fn output_types(&self, _stack: &Stack<N>, input_types: &[RegisterType<N>]) -> Result<Vec<RegisterType<N>>> {
        // Ensure the number of input types is correct.
        if input_types.len() != 2 {
            bail!("Instruction '{}' expects 2 inputs, found {} inputs", Self::opcode(), input_types.len())
        }
        // Ensure the number of operands is correct.
        if self.operands.len() != 2 {
            bail!("Instruction '{}' expects 2 operands, found {} operands", Self::opcode(), self.operands.len())
        }

        // TODO (howardwu): If the operation is Pedersen, check that it is within the number of bits.

        match VARIANT {
            0 | 1 | 2 | 3 | 4 | 5 => Ok(vec![RegisterType::Plaintext(PlaintextType::Literal(LiteralType::Field))]),
            _ => bail!("Invalid 'commit' variant: {VARIANT}"),
        }
    }
}

impl<N: Network, const VARIANT: u8> Parser for CommitInstruction<N, VARIANT> {
    /// Parses a string into an operation.
    #[inline]
    fn parse(string: &str) -> ParserResult<Self> {
        // Parse the opcode from the string.
        let (string, _) = tag(*Self::opcode())(string)?;
        // Parse the whitespace from the string.
        let (string, _) = Sanitizer::parse_whitespaces(string)?;
        // Parse the first operand from the string.
        let (string, first) = Operand::parse(string)?;
        // Parse the whitespace from the string.
        let (string, _) = Sanitizer::parse_whitespaces(string)?;
        // Parse the second operand from the string.
        let (string, second) = Operand::parse(string)?;
        // Parse the whitespace from the string.
        let (string, _) = Sanitizer::parse_whitespaces(string)?;
        // Parse the "into" from the string.
        let (string, _) = tag("into")(string)?;
        // Parse the whitespace from the string.
        let (string, _) = Sanitizer::parse_whitespaces(string)?;
        // Parse the destination register from the string.
        let (string, destination) = Register::parse(string)?;

        Ok((string, Self { operands: vec![first, second], destination }))
    }
}

impl<N: Network, const VARIANT: u8> FromStr for CommitInstruction<N, VARIANT> {
    type Err = Error;

    /// Parses a string into an operation.
    #[inline]
    fn from_str(string: &str) -> Result<Self> {
        match Self::parse(string) {
            Ok((remainder, object)) => {
                // Ensure the remainder is empty.
                ensure!(remainder.is_empty(), "Failed to parse string. Found invalid character in: \"{remainder}\"");
                // Return the object.
                Ok(object)
            }
            Err(error) => bail!("Failed to parse string. {error}"),
        }
    }
}

impl<N: Network, const VARIANT: u8> Debug for CommitInstruction<N, VARIANT> {
    /// Prints the operation as a string.
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        Display::fmt(self, f)
    }
}

impl<N: Network, const VARIANT: u8> Display for CommitInstruction<N, VARIANT> {
    /// Prints the operation to a string.
    fn fmt(&self, f: &mut Formatter) -> fmt::Result {
        // Ensure the number of operands is 2.
        if self.operands.len() != 2 {
            eprintln!("The number of operands must be 2, found {}", self.operands.len());
            return Err(fmt::Error);
        }
        // Print the operation.
        write!(f, "{} ", Self::opcode())?;
        self.operands.iter().try_for_each(|operand| write!(f, "{} ", operand))?;
        write!(f, "into {}", self.destination)
    }
}

impl<N: Network, const VARIANT: u8> FromBytes for CommitInstruction<N, VARIANT> {
    /// Reads the operation from a buffer.
    fn read_le<R: Read>(mut reader: R) -> IoResult<Self> {
        // Initialize the vector for the operands.
        let mut operands = Vec::with_capacity(2);
        // Read the operands.
        for _ in 0..2 {
            operands.push(Operand::read_le(&mut reader)?);
        }
        // Read the destination register.
        let destination = Register::read_le(&mut reader)?;

        // Return the operation.
        Ok(Self { operands, destination })
    }
}

impl<N: Network, const VARIANT: u8> ToBytes for CommitInstruction<N, VARIANT> {
    /// Writes the operation to a buffer.
    fn write_le<W: Write>(&self, mut writer: W) -> IoResult<()> {
        // Ensure the number of operands is 2.
        if self.operands.len() != 2 {
            return Err(error(format!("The number of operands must be 2, found {}", self.operands.len())));
        }
        // Write the operands.
        self.operands.iter().try_for_each(|operand| operand.write_le(&mut writer))?;
        // Write the destination register.
        self.destination.write_le(&mut writer)
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use console::network::Testnet3;

    type CurrentNetwork = Testnet3;

    #[test]
    fn test_parse() {
        let (string, commit) = CommitBHP512::<CurrentNetwork>::parse("commit.bhp512 r0 r1 into r2").unwrap();
        assert!(string.is_empty(), "Parser did not consume all of the string: '{string}'");
        assert_eq!(commit.operands.len(), 2, "The number of operands is incorrect");
        assert_eq!(commit.operands[0], Operand::Register(Register::Locator(0)), "The first operand is incorrect");
        assert_eq!(commit.operands[1], Operand::Register(Register::Locator(1)), "The second operand is incorrect");
        assert_eq!(commit.destination, Register::Locator(2), "The destination register is incorrect");
    }
}