1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405
// Copyright (C) 2019-2022 Aleo Systems Inc.
// This file is part of the snarkVM library.
// The snarkVM library is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// The snarkVM library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with the snarkVM library. If not, see <https://www.gnu.org/licenses/>.
use crate::{Opcode, Operand, Registers, Stack};
use console::{network::prelude::*, program::Register};
/// Finalizes the operands on-chain.
pub type FinalizeCommand<N> = FinalizeOperation<N, { Variant::FinalizeCommand as u8 }>;
enum Variant {
FinalizeCommand,
}
/// Finalizes an operation on the operands.
#[derive(Clone, PartialEq, Eq, Hash)]
pub struct FinalizeOperation<N: Network, const VARIANT: u8> {
/// The operands.
operands: Vec<Operand<N>>,
}
impl<N: Network, const VARIANT: u8> FinalizeOperation<N, VARIANT> {
/// Returns the opcode.
#[inline]
pub const fn opcode() -> Opcode {
match VARIANT {
0 => Opcode::Finalize("finalize"),
_ => panic!("Invalid 'finalize' instruction opcode"),
}
}
/// Returns the operands in the operation.
#[inline]
pub fn operands(&self) -> &[Operand<N>] {
// Sanity check that there is less than or equal to MAX_INPUTS operands.
debug_assert!(self.operands.len() <= N::MAX_INPUTS, "Finalize must have less than {} operands", N::MAX_INPUTS);
// Return the operands.
&self.operands
}
/// Returns the destination register.
#[inline]
pub fn destinations(&self) -> Vec<Register<N>> {
vec![]
}
}
impl<N: Network, const VARIANT: u8> FinalizeOperation<N, VARIANT> {
/// Evaluates the instruction.
#[inline]
pub fn evaluate<A: circuit::Aleo<Network = N>>(
&self,
stack: &Stack<N>,
registers: &mut Registers<N, A>,
) -> Result<()> {
// Ensure the number of operands is correct.
if self.operands.len() > N::MAX_INPUTS {
bail!("'{}' expects <= {} operands, found {} operands", Self::opcode(), N::MAX_INPUTS, self.operands.len())
}
// Load the operands values.
let _inputs: Vec<_> = self.operands.iter().map(|operand| registers.load(stack, operand)).try_collect()?;
// Finalize the inputs.
match VARIANT {
0 => {}
_ => bail!("Invalid 'finalize' variant: {VARIANT}"),
}
Ok(())
}
}
impl<N: Network, const VARIANT: u8> Parser for FinalizeOperation<N, VARIANT> {
/// Parses a string into an operation.
#[inline]
fn parse(string: &str) -> ParserResult<Self> {
/// Parses an operand.
fn parse_operand<N: Network>(string: &str) -> ParserResult<Operand<N>> {
// Parse the whitespace from the string.
let (string, _) = Sanitizer::parse_whitespaces(string)?;
// Parse the operand from the string.
let (string, operand) = Operand::parse(string)?;
// Return the remaining string and operand.
Ok((string, operand))
}
// Parse the whitespace and comments from the string.
let (string, _) = Sanitizer::parse(string)?;
// Parse the opcode from the string.
let (string, _) = tag(*Self::opcode())(string)?;
// Parse the operands from the string.
let (string, operands) = many0(parse_operand)(string)?;
// Parse the whitespace and comments from the string.
let (string, _) = Sanitizer::parse(string)?;
// Parse the ';' from the string.
let (string, _) = tag(";")(string)?;
Ok((string, Self { operands }))
}
}
impl<N: Network, const VARIANT: u8> FromStr for FinalizeOperation<N, VARIANT> {
type Err = Error;
/// Parses a string into an operation.
#[inline]
fn from_str(string: &str) -> Result<Self> {
match Self::parse(string) {
Ok((remainder, object)) => {
// Ensure the remainder is empty.
ensure!(remainder.is_empty(), "Failed to parse string. Found invalid character in: \"{remainder}\"");
// Return the object.
Ok(object)
}
Err(error) => bail!("Failed to parse string. {error}"),
}
}
}
impl<N: Network, const VARIANT: u8> Debug for FinalizeOperation<N, VARIANT> {
/// Prints the operation as a string.
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
Display::fmt(self, f)
}
}
impl<N: Network, const VARIANT: u8> Display for FinalizeOperation<N, VARIANT> {
/// Prints the operation to a string.
fn fmt(&self, f: &mut Formatter) -> fmt::Result {
// Ensure the number of operands is less than or equal to MAX_INPUTS.
if self.operands.len() > N::MAX_INPUTS {
eprintln!("The number of operands must be <= {}, found {}", N::MAX_INPUTS, self.operands.len());
return Err(fmt::Error);
}
// Print the operation.
write!(f, "{}", Self::opcode())?;
self.operands.iter().try_for_each(|operand| write!(f, " {}", operand))?;
write!(f, ";")
}
}
impl<N: Network, const VARIANT: u8> FromBytes for FinalizeOperation<N, VARIANT> {
/// Reads the operation from a buffer.
fn read_le<R: Read>(mut reader: R) -> IoResult<Self> {
// Read the number of operands.
let num_operands = u8::read_le(&mut reader)?;
// Ensure the number of operands is less than or equal to MAX_INPUTS.
if num_operands as usize > N::MAX_INPUTS {
return Err(error(format!("The number of operands must be <= {}, found {}", N::MAX_INPUTS, num_operands)));
}
// Initialize the vector for the operands.
let mut operands = Vec::with_capacity(num_operands as usize);
// Read the operands.
for _ in 0..(num_operands as usize) {
operands.push(Operand::read_le(&mut reader)?);
}
// Return the operation.
Ok(Self { operands })
}
}
impl<N: Network, const VARIANT: u8> ToBytes for FinalizeOperation<N, VARIANT> {
/// Writes the operation to a buffer.
fn write_le<W: Write>(&self, mut writer: W) -> IoResult<()> {
// Ensure the number of operands is less than or equal to MAX_INPUTS.
if self.operands.len() > N::MAX_INPUTS {
return Err(error(format!(
"The number of operands must be <= {}, found {}",
N::MAX_INPUTS,
self.operands.len()
)));
}
// Write the number of operands.
(self.operands.len() as u8).write_le(&mut writer)?;
// Write the operands.
self.operands.iter().try_for_each(|operand| operand.write_le(&mut writer))
}
}
#[cfg(test)]
mod tests {
use super::*;
// use circuit::AleoV0;
use console::network::Testnet3;
type CurrentNetwork = Testnet3;
// type CurrentAleo = AleoV0;
//
// /// Samples the stack. Note: Do not replicate this for real program use, it is insecure.
// fn sample_stack(
// opcode: Opcode,
// type_a: LiteralType,
// type_b: LiteralType,
// mode_a: circuit::Mode,
// mode_b: circuit::Mode,
// ) -> Result<(Stack<CurrentNetwork>, Vec<Operand<CurrentNetwork>>)> {
// use crate::{Process, Program};
// use console::program::Identifier;
//
// // Initialize the opcode.
// let opcode = opcode.to_string();
//
// // Initialize the function name.
// let function_name = Identifier::<CurrentNetwork>::from_str("run")?;
//
// // Initialize the registers.
// let r0 = Register::Locator(0);
// let r1 = Register::Locator(1);
//
// // Initialize the program.
// let program = Program::from_str(&format!(
// "program testing.aleo;
// function {function_name}:
// input {r0} as {type_a}.{mode_a};
// input {r1} as {type_b}.{mode_b};
// {opcode} {r0} {r1};
// "
// ))?;
//
// // Initialize the operands.
// let operand_a = Operand::Register(r0);
// let operand_b = Operand::Register(r1);
// let operands = vec![operand_a, operand_b];
//
// // Initialize the stack.
// let stack = Stack::new(&Process::load()?, &program)?;
//
// Ok((stack, operands))
// }
//
// /// Samples the registers. Note: Do not replicate this for real program use, it is insecure.
// fn sample_registers(
// stack: &Stack<CurrentNetwork>,
// literal_a: &Literal<CurrentNetwork>,
// literal_b: &Literal<CurrentNetwork>,
// ) -> Result<Registers<CurrentNetwork, CurrentAleo>> {
// use crate::{Authorization, CallStack};
// use console::program::{Identifier, Plaintext, Value};
//
// // Initialize the function name.
// let function_name = Identifier::from_str("run")?;
//
// // Initialize the registers.
// let mut registers = Registers::<CurrentNetwork, CurrentAleo>::new(
// CallStack::evaluate(Authorization::new(&[]))?,
// stack.get_register_types(&function_name)?.clone(),
// );
//
// // Initialize the registers.
// let r0 = Register::Locator(0);
// let r1 = Register::Locator(1);
//
// // Initialize the console values.
// let value_a = Value::Plaintext(Plaintext::from(literal_a));
// let value_b = Value::Plaintext(Plaintext::from(literal_b));
//
// // Store the values in the console registers.
// registers.store(stack, &r0, value_a.clone())?;
// registers.store(stack, &r1, value_b.clone())?;
//
// Ok(registers)
// }
//
// fn check_finalize<const VARIANT: u8>(
// operation: impl FnOnce(Vec<Operand<CurrentNetwork>>) -> FinalizeOperation<CurrentNetwork, VARIANT>,
// opcode: Opcode,
// literal_a: &Literal<CurrentNetwork>,
// literal_b: &Literal<CurrentNetwork>,
// mode_a: &circuit::Mode,
// mode_b: &circuit::Mode,
// ) {
// // Initialize the types.
// let type_a = literal_a.to_type();
// let type_b = literal_b.to_type();
// assert_eq!(type_a, type_b, "The two literals must be the *same* type for this test");
//
// // Initialize the stack.
// let (stack, operands) = sample_stack(opcode, type_a, type_b, *mode_a, *mode_b).unwrap();
// // Initialize the operation.
// let operation = operation(operands);
//
// /* First, check the operation *succeeds* when both operands are `literal_a.mode_a`. */
// {
// // Attempt to compute the valid operand case.
// let mut registers = sample_registers(&stack, literal_a, literal_a).unwrap();
// let result_a = operation.evaluate(&stack, &mut registers);
//
// // Ensure the result is correct.
// match VARIANT {
// 0 => assert!(result_a.is_ok(), "Instruction '{operation}' failed (console): {literal_a} {literal_a}"),
// _ => panic!("Found an invalid 'finalize' variant in the test"),
// }
// }
// /* Next, check the mismatching literals *fail*. */
// if literal_a != literal_b {
// // Attempt to compute the valid operand case.
// let mut registers = sample_registers(&stack, literal_a, literal_b).unwrap();
// let result_a = operation.evaluate(&stack, &mut registers);
//
// // Ensure the result is correct.
// match VARIANT {
// 0 => assert!(
// result_a.is_err(),
// "Instruction '{operation}' should have failed (console): {literal_a} {literal_b}"
// ),
// _ => panic!("Found an invalid 'finalize' variant in the test"),
// }
// }
// }
//
// fn check_finalize_fails(
// opcode: Opcode,
// literal_a: &Literal<CurrentNetwork>,
// literal_b: &Literal<CurrentNetwork>,
// mode_a: &circuit::Mode,
// mode_b: &circuit::Mode,
// ) {
// // Initialize the types.
// let type_a = literal_a.to_type();
// let type_b = literal_b.to_type();
// assert_ne!(type_a, type_b, "The two literals must be *different* types for this test");
//
// // If the types mismatch, ensure the stack fails to initialize.
// let result = sample_stack(opcode, type_a, type_b, *mode_a, *mode_b);
// assert!(
// result.is_err(),
// "Stack should have failed to initialize for: {opcode} {type_a}.{mode_a} {type_b}.{mode_b}"
// );
// }
//
// #[test]
// fn test_finalize_eq_succeeds() {
// // Initialize the operation.
// let operation = |operands| FinalizeCommand::<CurrentNetwork> { operands };
// // Initialize the opcode.
// let opcode = FinalizeCommand::<CurrentNetwork>::opcode();
//
// // Prepare the test.
// let literals_a = crate::sample_literals!(CurrentNetwork, &mut test_rng());
// let literals_b = crate::sample_literals!(CurrentNetwork, &mut test_rng());
// let modes_a = [/* circuit::Mode::Constant, */ circuit::Mode::Public, circuit::Mode::Private];
// let modes_b = [/* circuit::Mode::Constant, */ circuit::Mode::Public, circuit::Mode::Private];
//
// for (literal_a, literal_b) in literals_a.iter().zip_eq(literals_b.iter()) {
// for mode_a in &modes_a {
// for mode_b in &modes_b {
// // Check the operation.
// check_finalize(operation, opcode, literal_a, literal_b, mode_a, mode_b);
// }
// }
// }
// }
//
// #[test]
// fn test_finalize_evaluate() {
// use rayon::prelude::*;
//
// // Initialize the opcode.
// let opcode = FinalizeCommand::<CurrentNetwork>::opcode();
//
// // Prepare the test.
// let literals_a = crate::sample_literals!(CurrentNetwork, &mut test_rng());
// let literals_b = crate::sample_literals!(CurrentNetwork, &mut test_rng());
// let modes_a = [/* circuit::Mode::Constant, */ circuit::Mode::Public, circuit::Mode::Private];
// let modes_b = [/* circuit::Mode::Constant, */ circuit::Mode::Public, circuit::Mode::Private];
//
// literals_a.par_iter().for_each(|literal_a| {
// for literal_b in &literals_b {
// for mode_a in &modes_a {
// for mode_b in &modes_b {
// if literal_a.to_type() != literal_b.to_type() {
// // Check the operation fails.
// check_finalize_fails(opcode, literal_a, literal_b, mode_a, mode_b);
// }
// }
// }
// }
// });
// }
#[test]
fn test_parse() {
let expected = "finalize r0 r1;";
let (string, finalize) = FinalizeCommand::<CurrentNetwork>::parse(expected).unwrap();
assert!(string.is_empty(), "Parser did not consume all of the string: '{string}'");
assert_eq!(expected, finalize.to_string(), "Display.fmt() did not match expected: '{string}'");
assert_eq!(finalize.operands.len(), 2, "The number of operands is incorrect");
assert_eq!(finalize.operands[0], Operand::Register(Register::Locator(0)), "The first operand is incorrect");
assert_eq!(finalize.operands[1], Operand::Register(Register::Locator(1)), "The second operand is incorrect");
}
}