snarkvm_circuit_types_integers/
add_wrapped.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
// Copyright 2024 Aleo Network Foundation
// This file is part of the snarkVM library.

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at:

// http://www.apache.org/licenses/LICENSE-2.0

// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use super::*;

impl<E: Environment, I: IntegerType> AddWrapped<Self> for Integer<E, I> {
    type Output = Self;

    #[inline]
    fn add_wrapped(&self, other: &Integer<E, I>) -> Self::Output {
        // Determine the variable mode.
        if self.is_constant() && other.is_constant() {
            // Compute the sum and return the new constant.
            witness!(|self, other| console::Integer::new(self.wrapping_add(&other)))
        } else {
            // Instead of adding the bits of `self` and `other` directly, the integers are
            // converted into a field elements, and summed, before converting back to integers.
            // Note: This is safe as the field is larger than the maximum integer type supported.
            let sum = self.to_field() + other.to_field();

            // Extract the integer bits from the field element, with a carry bit.
            let mut bits_le = sum.to_lower_bits_le(I::BITS as usize + 1);
            // Drop the carry bit as the operation is wrapped addition.
            bits_le.pop();

            // Return the sum of `self` and `other`.
            Integer { bits_le, phantom: Default::default() }
        }
    }
}

impl<E: Environment, I: IntegerType> Metrics<dyn AddWrapped<Integer<E, I>, Output = Integer<E, I>>> for Integer<E, I> {
    type Case = (Mode, Mode);

    fn count(case: &Self::Case) -> Count {
        match (case.0, case.1) {
            (Mode::Constant, Mode::Constant) => Count::is(I::BITS, 0, 0, 0),
            (_, _) => Count::is(0, 0, I::BITS + 1, I::BITS + 2),
        }
    }
}

impl<E: Environment, I: IntegerType> OutputMode<dyn AddWrapped<Integer<E, I>, Output = Integer<E, I>>>
    for Integer<E, I>
{
    type Case = (Mode, Mode);

    fn output_mode(case: &Self::Case) -> Mode {
        match (case.0, case.1) {
            (Mode::Constant, Mode::Constant) => Mode::Constant,
            (_, _) => Mode::Private,
        }
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use snarkvm_circuit_environment::Circuit;

    use core::ops::RangeInclusive;

    const ITERATIONS: u64 = 128;

    fn check_add<I: IntegerType>(
        name: &str,
        first: console::Integer<<Circuit as Environment>::Network, I>,
        second: console::Integer<<Circuit as Environment>::Network, I>,
        mode_a: Mode,
        mode_b: Mode,
    ) {
        let a = Integer::<Circuit, I>::new(mode_a, first);
        let b = Integer::new(mode_b, second);
        let expected = first.wrapping_add(&second);
        Circuit::scope(name, || {
            let candidate = a.add_wrapped(&b);
            assert_eq!(expected, *candidate.eject_value());
            assert_eq!(console::Integer::new(expected), candidate.eject_value());
            assert_count!(AddWrapped(Integer<I>, Integer<I>) => Integer<I>, &(mode_a, mode_b));
            assert_output_mode!(AddWrapped(Integer<I>, Integer<I>) => Integer<I>, &(mode_a, mode_b), candidate);
        });
        Circuit::reset();
    }

    fn run_test<I: IntegerType>(mode_a: Mode, mode_b: Mode) {
        let mut rng = TestRng::default();

        for i in 0..ITERATIONS {
            let first = Uniform::rand(&mut rng);
            let second = Uniform::rand(&mut rng);

            let name = format!("Add: {mode_a} + {mode_b} {i}");
            check_add::<I>(&name, first, second, mode_a, mode_b);
            check_add::<I>(&name, second, first, mode_a, mode_b); // Commute the operation.
        }

        // Overflow
        check_add::<I>("MAX + 1", console::Integer::MAX, console::Integer::one(), mode_a, mode_b);
        check_add::<I>("1 + MAX", console::Integer::one(), console::Integer::MAX, mode_a, mode_b);

        // Underflow
        if I::is_signed() {
            check_add::<I>("MIN + (-1)", console::Integer::MIN, -console::Integer::one(), mode_a, mode_b);
            check_add::<I>("-1 + MIN", -console::Integer::one(), console::Integer::MIN, mode_a, mode_b);
        }
    }

    fn run_exhaustive_test<I: IntegerType>(mode_a: Mode, mode_b: Mode)
    where
        RangeInclusive<I>: Iterator<Item = I>,
    {
        for first in I::MIN..=I::MAX {
            for second in I::MIN..=I::MAX {
                let first = console::Integer::<_, I>::new(first);
                let second = console::Integer::<_, I>::new(second);

                let name = format!("Add: ({first} + {second})");
                check_add::<I>(&name, first, second, mode_a, mode_b);
            }
        }
    }

    test_integer_binary!(run_test, i8, plus);
    test_integer_binary!(run_test, i16, plus);
    test_integer_binary!(run_test, i32, plus);
    test_integer_binary!(run_test, i64, plus);
    test_integer_binary!(run_test, i128, plus);

    test_integer_binary!(run_test, u8, plus);
    test_integer_binary!(run_test, u16, plus);
    test_integer_binary!(run_test, u32, plus);
    test_integer_binary!(run_test, u64, plus);
    test_integer_binary!(run_test, u128, plus);

    test_integer_binary!(#[ignore], run_exhaustive_test, u8, plus, exhaustive);
    test_integer_binary!(#[ignore], run_exhaustive_test, i8, plus, exhaustive);
}