1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
// Copyright (C) 2019-2023 Aleo Systems Inc.
// This file is part of the snarkVM library.
// The snarkVM library is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// The snarkVM library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with the snarkVM library. If not, see <https://www.gnu.org/licenses/>.
use crate::Mode;
/// Operations to eject from a circuit environment into primitive form.
pub trait Eject {
type Primitive;
///
/// Ejects the mode and primitive value of the circuit type.
///
fn eject(&self) -> (Mode, Self::Primitive) {
(self.eject_mode(), self.eject_value())
}
///
/// Ejects the mode of the circuit type.
///
fn eject_mode(&self) -> Mode;
///
/// Ejects the circuit type as a primitive value.
///
fn eject_value(&self) -> Self::Primitive;
///
/// Returns `true` if the circuit is a constant.
///
fn is_constant(&self) -> bool {
self.eject_mode().is_constant()
}
///
/// Returns `true` if the circuit is a public.
///
fn is_public(&self) -> bool {
self.eject_mode().is_public()
}
///
/// Returns `true` if the circuit is a private.
///
fn is_private(&self) -> bool {
self.eject_mode().is_private()
}
}
/********************/
/****** Arrays ******/
/********************/
impl Eject for Vec<Mode> {
type Primitive = Vec<Mode>;
/// A helper method to deduce the mode from a list of `Eject` circuits.
#[inline]
fn eject_mode(&self) -> Mode {
// TODO (howardwu): Determine if a default mode of `constant` is appropriate.
// Retrieve the mode of the first circuit.
match self.get(0) {
Some(first) => Mode::combine(*first, self.iter().copied().skip(1)),
// None => Mode::Constant,
None => panic!("Attempted to eject the mode on an empty circuit"),
}
}
/// Ejects the value from each circuit.
#[inline]
fn eject_value(&self) -> Self::Primitive {
self.clone()
}
}
impl<C: Eject<Primitive = P>, P> Eject for Vec<C> {
type Primitive = Vec<P>;
/// A helper method to deduce the mode from a list of `Eject` circuits.
#[inline]
fn eject_mode(&self) -> Mode {
self.as_slice().eject_mode()
}
/// Ejects the value from each circuit.
#[inline]
fn eject_value(&self) -> Self::Primitive {
self.as_slice().eject_value()
}
}
impl<C: Eject<Primitive = P>, P, const N: usize> Eject for [C; N] {
type Primitive = Vec<P>;
/// A helper method to deduce the mode from a list of `Eject` circuits.
#[inline]
fn eject_mode(&self) -> Mode {
self.as_slice().eject_mode()
}
/// Ejects the value from each circuit.
#[inline]
fn eject_value(&self) -> Self::Primitive {
self.as_slice().eject_value()
}
}
impl<C: Eject<Primitive = P>, P> Eject for &[C] {
type Primitive = Vec<P>;
/// A helper method to deduce the mode from a list of `Eject` circuits.
#[inline]
fn eject_mode(&self) -> Mode {
// TODO (howardwu): Determine if a default mode of `constant` is appropriate.
// Retrieve the mode of the first circuit.
match self.get(0) {
Some(first) => Mode::combine(first.eject_mode(), self.iter().skip(1).map(Eject::eject_mode)),
None => Mode::Constant,
// None => panic!("Attempted to eject the mode on an empty circuit"),
}
}
/// Ejects the value from each circuit.
#[inline]
fn eject_value(&self) -> Self::Primitive {
self.iter().map(Eject::eject_value).collect()
}
}
/********************/
/****** Tuples ******/
/********************/
/// A helper macro to implement `Eject` for a tuple of `Eject` circuits.
macro_rules! eject_tuple {
(($t0:ident, $i0:expr), $(($ty:ident, $idx:tt)),*) => {
impl<'a, $t0: Eject, $($ty: Eject),*> Eject for (&'a $t0, $(&'a $ty),*) {
type Primitive = ($t0::Primitive, $( $ty::Primitive ),*);
/// A helper method to deduce the mode from a tuple of `Eject` circuits.
#[inline]
fn eject_mode(&self) -> Mode {
Mode::combine(self.0.eject_mode(), [ $(self.$idx.eject_mode()),* ])
}
/// Ejects the value from each circuit.
#[inline]
fn eject_value(&self) -> Self::Primitive {
(self.0.eject_value(), $(self.$idx.eject_value()),*)
}
}
impl<'a, $t0: Eject, $($ty: Eject),*> Eject for &'a ($t0, $($ty),*) {
type Primitive = ($t0::Primitive, $( $ty::Primitive ),*);
/// A helper method to deduce the mode from a tuple of `Eject` circuits.
#[inline]
fn eject_mode(&self) -> Mode {
Mode::combine(self.0.eject_mode(), [ $(self.$idx.eject_mode()),* ])
}
/// Ejects the value from each circuit.
#[inline]
fn eject_value(&self) -> Self::Primitive {
(self.0.eject_value(), $(self.$idx.eject_value()),*)
}
}
}
}
eject_tuple!((C0, 0),);
eject_tuple!((C0, 0), (C1, 1));
eject_tuple!((C0, 0), (C1, 1), (C2, 2));
eject_tuple!((C0, 0), (C1, 1), (C2, 2), (C3, 3));
eject_tuple!((C0, 0), (C1, 1), (C2, 2), (C3, 3), (C4, 4));
eject_tuple!((C0, 0), (C1, 1), (C2, 2), (C3, 3), (C4, 4), (C5, 5));
eject_tuple!((C0, 0), (C1, 1), (C2, 2), (C3, 3), (C4, 4), (C5, 5), (C6, 6));
eject_tuple!((C0, 0), (C1, 1), (C2, 2), (C3, 3), (C4, 4), (C5, 5), (C6, 6), (C7, 7));
eject_tuple!((C0, 0), (C1, 1), (C2, 2), (C3, 3), (C4, 4), (C5, 5), (C6, 6), (C7, 7), (C8, 8));
eject_tuple!((C0, 0), (C1, 1), (C2, 2), (C3, 3), (C4, 4), (C5, 5), (C6, 6), (C7, 7), (C8, 8), (C9, 9));
eject_tuple!((C0, 0), (C1, 1), (C2, 2), (C3, 3), (C4, 4), (C5, 5), (C6, 6), (C7, 7), (C8, 8), (C9, 9), (C10, 10));
#[rustfmt::skip] eject_tuple!((C0, 0), (C1, 1), (C2, 2), (C3, 3), (C4, 4), (C5, 5), (C6, 6), (C7, 7), (C8, 8), (C9, 9), (C10, 10), (C11, 11));
#[rustfmt::skip] eject_tuple!((C0, 0), (C1, 1), (C2, 2), (C3, 3), (C4, 4), (C5, 5), (C6, 6), (C7, 7), (C8, 8), (C9, 9), (C10, 10), (C11, 11), (C12, 12));