1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176
// Copyright (C) 2019-2023 Aleo Systems Inc.
// This file is part of the snarkVM library.
// The snarkVM library is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// The snarkVM library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with the snarkVM library. If not, see <https://www.gnu.org/licenses/>.
use crate::{witness_mode, Assignment, Inject, LinearCombination, Mode, Variable, R1CS};
use snarkvm_curves::AffineCurve;
use snarkvm_fields::traits::*;
use core::{fmt, hash};
pub trait Environment: 'static + Copy + Clone + fmt::Debug + fmt::Display + Eq + PartialEq + hash::Hash {
type Network: console::Network<Affine = Self::Affine, Field = Self::BaseField, Scalar = Self::ScalarField>;
type Affine: AffineCurve<
BaseField = Self::BaseField,
ScalarField = Self::ScalarField,
Coordinates = (Self::BaseField, Self::BaseField),
>;
type BaseField: PrimeField + SquareRootField + Copy;
type ScalarField: PrimeField<BigInteger = <Self::BaseField as PrimeField>::BigInteger> + Copy;
/// The coefficient `A` of the twisted Edwards curve.
const EDWARDS_A: Self::BaseField = <Self::Network as console::Environment>::EDWARDS_A;
/// The coefficient `D` of the twisted Edwards curve.
const EDWARDS_D: Self::BaseField = <Self::Network as console::Environment>::EDWARDS_D;
/// The coefficient `A` of the Montgomery curve.
const MONTGOMERY_A: Self::BaseField = <Self::Network as console::Environment>::MONTGOMERY_A;
/// The coefficient `B` of the Montgomery curve.
const MONTGOMERY_B: Self::BaseField = <Self::Network as console::Environment>::MONTGOMERY_B;
/// The maximum number of bytes allowed in a string.
const MAX_STRING_BYTES: u32 = <Self::Network as console::Environment>::MAX_STRING_BYTES;
/// Returns the `zero` constant.
fn zero() -> LinearCombination<Self::BaseField>;
/// Returns the `one` constant.
fn one() -> LinearCombination<Self::BaseField>;
/// Returns a new variable of the given mode and value.
fn new_variable(mode: Mode, value: Self::BaseField) -> Variable<Self::BaseField>;
/// Returns a new witness of the given mode and value.
fn new_witness<Fn: FnOnce() -> Output::Primitive, Output: Inject>(mode: Mode, value: Fn) -> Output;
/// Enters a new scope for the environment.
fn scope<S: Into<String>, Fn, Output>(name: S, logic: Fn) -> Output
where
Fn: FnOnce() -> Output;
/// Adds one constraint enforcing that `(A * B) == C`.
fn enforce<Fn, A, B, C>(constraint: Fn)
where
Fn: FnOnce() -> (A, B, C),
A: Into<LinearCombination<Self::BaseField>>,
B: Into<LinearCombination<Self::BaseField>>,
C: Into<LinearCombination<Self::BaseField>>;
/// Adds one constraint enforcing that the given boolean is `true`.
fn assert<Boolean: Into<LinearCombination<Self::BaseField>>>(boolean: Boolean) {
Self::enforce(|| (boolean, Self::one(), Self::one()))
}
/// Adds one constraint enforcing that the `A == B`.
fn assert_eq<A, B>(a: A, b: B)
where
A: Into<LinearCombination<Self::BaseField>>,
B: Into<LinearCombination<Self::BaseField>>,
{
Self::enforce(|| (a, Self::one(), b))
}
/// Adds one constraint enforcing that the `A != B`.
fn assert_neq<A, B>(a: A, b: B)
where
A: Into<LinearCombination<Self::BaseField>>,
B: Into<LinearCombination<Self::BaseField>>,
{
let (a, b) = (a.into(), b.into());
let mode = witness_mode!(a, b);
// Compute `(a - b)`.
let a_minus_b = a - b;
// Compute `multiplier` as `1 / (a - b)`.
let multiplier = match a_minus_b.value().inverse() {
Some(inverse) => Self::new_variable(mode, inverse).into(),
None => Self::zero(),
};
// Enforce `(a - b) * multiplier == 1`.
Self::enforce(|| (a_minus_b, multiplier, Self::one()));
}
/// Returns `true` if all constraints in the environment are satisfied.
fn is_satisfied() -> bool;
/// Returns `true` if all constraints in the current scope are satisfied.
fn is_satisfied_in_scope() -> bool;
/// Returns the number of constants in the entire environment.
fn num_constants() -> u64;
/// Returns the number of public variables in the entire environment.
fn num_public() -> u64;
/// Returns the number of private variables in the entire environment.
fn num_private() -> u64;
/// Returns the number of constraints in the entire environment.
fn num_constraints() -> u64;
/// Returns the number of gates in the entire environment.
fn num_gates() -> u64;
/// Returns a tuple containing the number of constants, public variables, private variables, constraints, and gates in the entire environment.
fn count() -> (u64, u64, u64, u64, u64) {
(Self::num_constants(), Self::num_public(), Self::num_private(), Self::num_constraints(), Self::num_gates())
}
/// Returns the number of constants for the current scope.
fn num_constants_in_scope() -> u64;
/// Returns the number of public variables for the current scope.
fn num_public_in_scope() -> u64;
/// Returns the number of private variables for the current scope.
fn num_private_in_scope() -> u64;
/// Returns the number of constraints for the current scope.
fn num_constraints_in_scope() -> u64;
/// Returns the number of gates for the current scope.
fn num_gates_in_scope() -> u64;
/// Returns a tuple containing the number of constants, public variables, private variables, constraints, and gates for the current scope.
fn count_in_scope() -> (u64, u64, u64, u64, u64) {
(
Self::num_constants_in_scope(),
Self::num_public_in_scope(),
Self::num_private_in_scope(),
Self::num_constraints_in_scope(),
Self::num_gates_in_scope(),
)
}
/// Halts the program from further synthesis, evaluation, and execution in the current environment.
fn halt<S: Into<String>, T>(message: S) -> T {
<Self::Network as console::Environment>::halt(message)
}
/// Returns the R1CS circuit, resetting the circuit.
fn inject_r1cs(r1cs: R1CS<Self::BaseField>);
/// Returns the R1CS circuit, resetting the circuit.
fn eject_r1cs_and_reset() -> R1CS<Self::BaseField>;
/// Returns the R1CS assignment of the circuit, resetting the circuit.
fn eject_assignment_and_reset() -> Assignment<<Self::Network as console::Environment>::Field>;
/// Clears and initializes an empty environment.
fn reset();
}