1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103
// Copyright (C) 2019-2023 Aleo Systems Inc.
// This file is part of the snarkVM library.
// The snarkVM library is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// The snarkVM library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with the snarkVM library. If not, see <https://www.gnu.org/licenses/>.
mod commit;
mod commit_uncompressed;
mod hash;
mod hash_uncompressed;
#[cfg(all(test, console))]
use snarkvm_circuit_types::environment::{assert_count, assert_output_mode, assert_scope};
use crate::{Commit, CommitUncompressed, Hash, HashUncompressed};
use snarkvm_circuit_types::prelude::*;
/// Pedersen64 is an *additively-homomorphic* collision-resistant hash function that takes up to a 64-bit input.
pub type Pedersen64<E> = Pedersen<E, 64>;
/// Pedersen128 is an *additively-homomorphic* collision-resistant hash function that takes up to a 128-bit input.
pub type Pedersen128<E> = Pedersen<E, 128>;
/// Pedersen is a collision-resistant hash function that takes a variable-length input.
/// The Pedersen hash function does *not* behave like a random oracle, see Poseidon for one.
pub struct Pedersen<E: Environment, const NUM_BITS: u8> {
/// The base window for the Pedersen hash.
base_window: Vec<Group<E>>,
/// The random base window for the Pedersen commitment.
random_base: Vec<Group<E>>,
}
#[cfg(console)]
impl<E: Environment, const NUM_BITS: u8> Inject for Pedersen<E, NUM_BITS> {
type Primitive = console::Pedersen<E::Network, NUM_BITS>;
/// Initializes a new instance of Pedersen with the given Pedersen variant.
fn new(_mode: Mode, pedersen: Self::Primitive) -> Self {
// Initialize the base window.
let base_window = Vec::constant(pedersen.base_window().iter().copied().collect());
assert_eq!(base_window.len(), NUM_BITS as usize);
// Initialize the random base.
let random_base = Vec::constant(pedersen.random_base_window().iter().copied().collect());
assert_eq!(random_base.len(), E::ScalarField::size_in_bits());
Self { base_window, random_base }
}
}
#[cfg(all(test, console))]
mod tests {
use super::*;
use snarkvm_circuit_types::environment::Circuit;
const ITERATIONS: u64 = 10;
const MESSAGE: &str = "PedersenCircuit0";
const NUM_BITS_MULTIPLIER: u8 = 8;
fn check_setup<const NUM_BITS: u8>(num_constants: u64, num_public: u64, num_private: u64, num_constraints: u64) {
for _ in 0..ITERATIONS {
// Initialize the native Pedersen hash.
let native = console::Pedersen::<<Circuit as Environment>::Network, NUM_BITS>::setup(MESSAGE);
Circuit::scope("Pedersen::setup", || {
// Perform the setup operation.
let circuit = Pedersen::<Circuit, NUM_BITS>::constant(native.clone());
assert_scope!(num_constants, num_public, num_private, num_constraints);
// Check for equivalency of the bases.
native.base_window().iter().zip_eq(circuit.base_window.iter()).for_each(|(expected, candidate)| {
assert_eq!(*expected, candidate.eject_value());
});
// Check for equality of the random base.
native.random_base_window().iter().zip_eq(circuit.random_base.iter()).for_each(
|(expected, candidate)| {
assert_eq!(*expected, candidate.eject_value());
},
);
});
}
}
#[test]
fn test_setup_constant() {
// Set the number of windows, and modulate the window size.
check_setup::<NUM_BITS_MULTIPLIER>(2590, 0, 0, 0);
check_setup::<{ 2 * NUM_BITS_MULTIPLIER }>(2670, 0, 0, 0);
check_setup::<{ 3 * NUM_BITS_MULTIPLIER }>(2750, 0, 0, 0);
check_setup::<{ 4 * NUM_BITS_MULTIPLIER }>(2830, 0, 0, 0);
check_setup::<{ 5 * NUM_BITS_MULTIPLIER }>(2910, 0, 0, 0);
}
}