1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
use crate::{
fft::{
domain::{FFTPrecomputation, IFFTPrecomputation},
EvaluationDomain,
},
polycommit::sonic_pc::{LCTerm, LabeledPolynomial, LinearCombination},
snark::marlin::{
ahp::{matrices, verifier, AHPError, CircuitInfo},
prover,
MarlinMode,
},
};
use itertools::Itertools;
use snarkvm_fields::{Field, PrimeField};
use core::{borrow::Borrow, marker::PhantomData};
use std::collections::BTreeMap;
pub struct AHPForR1CS<F: Field, MM: MarlinMode> {
field: PhantomData<F>,
mode: PhantomData<MM>,
}
pub(crate) fn witness_label(poly: &str, i: usize) -> String {
format!("{poly}_{:0>8}", i)
}
impl<F: PrimeField, MM: MarlinMode> AHPForR1CS<F, MM> {
#[rustfmt::skip]
pub const LC_WITH_ZERO_EVAL: [&'static str; 2] = ["matrix_sumcheck", "lincheck_sumcheck"];
pub fn zk_bound() -> Option<usize> {
MM::ZK.then_some(1)
}
pub fn num_formatted_public_inputs_is_admissible(num_inputs: usize) -> Result<(), AHPError> {
match num_inputs.count_ones() == 1 {
true => Ok(()),
false => Err(AHPError::InvalidPublicInputLength),
}
}
pub fn formatted_public_input_is_admissible(input: &[F]) -> Result<(), AHPError> {
Self::num_formatted_public_inputs_is_admissible(input.len())
}
pub fn max_degree(num_constraints: usize, num_variables: usize, num_non_zero: usize) -> Result<usize, AHPError> {
let padded_matrix_dim = matrices::padded_matrix_dim(num_variables, num_constraints);
let zk_bound = Self::zk_bound().unwrap_or(0);
let constraint_domain_size = EvaluationDomain::<F>::compute_size_of_domain(padded_matrix_dim)
.ok_or(AHPError::PolynomialDegreeTooLarge)?;
let non_zero_domain_size =
EvaluationDomain::<F>::compute_size_of_domain(num_non_zero).ok_or(AHPError::PolynomialDegreeTooLarge)?;
Ok(*[
2 * constraint_domain_size + zk_bound - 2,
if MM::ZK { constraint_domain_size + 3 } else { 0 }, constraint_domain_size,
constraint_domain_size,
non_zero_domain_size - 1, ]
.iter()
.max()
.unwrap())
}
pub fn get_degree_bounds(info: &CircuitInfo<F>) -> [usize; 4] {
let num_constraints = info.num_constraints;
let num_non_zero_a = info.num_non_zero_a;
let num_non_zero_b = info.num_non_zero_b;
let num_non_zero_c = info.num_non_zero_c;
[
EvaluationDomain::<F>::compute_size_of_domain(num_constraints).unwrap() - 2,
EvaluationDomain::<F>::compute_size_of_domain(num_non_zero_a).unwrap() - 2,
EvaluationDomain::<F>::compute_size_of_domain(num_non_zero_b).unwrap() - 2,
EvaluationDomain::<F>::compute_size_of_domain(num_non_zero_c).unwrap() - 2,
]
}
pub fn max_non_zero_domain(info: &CircuitInfo<F>) -> EvaluationDomain<F> {
let non_zero_a_domain = EvaluationDomain::new(info.num_non_zero_a).unwrap();
let non_zero_b_domain = EvaluationDomain::new(info.num_non_zero_b).unwrap();
let non_zero_c_domain = EvaluationDomain::new(info.num_non_zero_c).unwrap();
Self::max_non_zero_domain_helper(non_zero_a_domain, non_zero_b_domain, non_zero_c_domain)
}
fn max_non_zero_domain_helper(
domain_a: EvaluationDomain<F>,
domain_b: EvaluationDomain<F>,
domain_c: EvaluationDomain<F>,
) -> EvaluationDomain<F> {
[domain_a, domain_b, domain_c].into_iter().max_by_key(|d| d.size()).unwrap()
}
pub fn fft_precomputation(
constraint_domain_size: usize,
non_zero_a_domain_size: usize,
non_zero_b_domain_size: usize,
non_zero_c_domain_size: usize,
) -> Option<(FFTPrecomputation<F>, IFFTPrecomputation<F>)> {
let largest_domain_size = [
3 * constraint_domain_size,
non_zero_a_domain_size * 2,
non_zero_b_domain_size * 2,
non_zero_c_domain_size * 2,
]
.into_iter()
.max()?;
let largest_mul_domain = EvaluationDomain::new(largest_domain_size)?;
let fft_precomputation = largest_mul_domain.precompute_fft();
let ifft_precomputation = fft_precomputation.to_ifft_precomputation();
Some((fft_precomputation, ifft_precomputation))
}
#[allow(non_snake_case)]
pub fn construct_linear_combinations<E: EvaluationsProvider<F>>(
public_inputs: &[Vec<F>],
evals: &E,
prover_third_message: &prover::ThirdMessage<F>,
state: &verifier::State<F, MM>,
) -> Result<BTreeMap<String, LinearCombination<F>>, AHPError> {
assert!(!public_inputs.is_empty());
let constraint_domain = state.constraint_domain;
let non_zero_a_domain = state.non_zero_a_domain;
let non_zero_b_domain = state.non_zero_b_domain;
let non_zero_c_domain = state.non_zero_c_domain;
let input_domain = state.input_domain;
let largest_non_zero_domain =
Self::max_non_zero_domain_helper(state.non_zero_a_domain, state.non_zero_b_domain, state.non_zero_c_domain);
let public_inputs = public_inputs
.iter()
.map(|p| {
let public_input = prover::ConstraintSystem::format_public_input(p);
Self::formatted_public_input_is_admissible(&public_input).map(|_| public_input)
})
.collect::<Result<Vec<_>, _>>()?;
assert_eq!(public_inputs[0].len(), input_domain.size());
let first_round_msg = state.first_round_message.as_ref().unwrap();
let alpha = first_round_msg.alpha;
let eta_a = F::one();
let eta_b = first_round_msg.eta_b;
let eta_c = first_round_msg.eta_c;
let batch_combiners = &first_round_msg.batch_combiners;
let prover::ThirdMessage { sum_a, sum_b, sum_c } = prover_third_message;
#[rustfmt::skip]
let t_at_beta =
eta_a * state.non_zero_a_domain.size_as_field_element * sum_a +
eta_b * state.non_zero_b_domain.size_as_field_element * sum_b +
eta_c * state.non_zero_c_domain.size_as_field_element * sum_c;
let r_b = state.third_round_message.as_ref().unwrap().r_b;
let r_c = state.third_round_message.as_ref().unwrap().r_c;
let beta = state.second_round_message.unwrap().beta;
let gamma = state.gamma.unwrap();
let mut linear_combinations = BTreeMap::new();
let lincheck_time = start_timer!(|| "Lincheck");
let z_b_s = (0..state.batch_size)
.map(|i| {
let z_b_i = witness_label("z_b", i);
LinearCombination::new(z_b_i.clone(), [(F::one(), z_b_i)])
})
.collect::<Vec<_>>();
let g_1 = LinearCombination::new("g_1", [(F::one(), "g_1")]);
let bivariate_poly_time = start_timer!(|| "Bivariate poly");
let r_alpha_at_beta = constraint_domain.eval_unnormalized_bivariate_lagrange_poly(alpha, beta);
end_timer!(bivariate_poly_time);
let v_H_at_alpha_time = start_timer!(|| "v_H_at_alpha");
let v_H_at_alpha = constraint_domain.evaluate_vanishing_polynomial(alpha);
end_timer!(v_H_at_alpha_time);
let v_H_at_beta_time = start_timer!(|| "v_H_at_beta");
let v_H_at_beta = constraint_domain.evaluate_vanishing_polynomial(beta);
end_timer!(v_H_at_beta_time);
let v_X_at_beta_time = start_timer!(|| "v_X_at_beta");
let v_X_at_beta = input_domain.evaluate_vanishing_polynomial(beta);
end_timer!(v_X_at_beta_time);
let z_b_s_at_beta = z_b_s.iter().map(|z_b| evals.get_lc_eval(z_b, beta)).collect::<Result<Vec<_>, _>>()?;
let batch_z_b_at_beta: F =
z_b_s_at_beta.iter().zip_eq(batch_combiners).map(|(z_b_at_beta, combiner)| *z_b_at_beta * combiner).sum();
let g_1_at_beta = evals.get_lc_eval(&g_1, beta)?;
let lag_at_beta = input_domain.evaluate_all_lagrange_coefficients(beta);
let combined_x_at_beta = batch_combiners
.iter()
.zip_eq(&public_inputs)
.map(|(c, x)| x.iter().zip_eq(&lag_at_beta).map(|(x, l)| *x * l).sum::<F>() * c)
.sum::<F>();
#[rustfmt::skip]
let lincheck_sumcheck = {
let mut lincheck_sumcheck = LinearCombination::empty("lincheck_sumcheck");
if MM::ZK {
lincheck_sumcheck.add(F::one(), "mask_poly");
}
for (i, (z_b_i_at_beta, combiner)) in z_b_s_at_beta.iter().zip_eq(batch_combiners).enumerate() {
lincheck_sumcheck
.add(r_alpha_at_beta * combiner * (eta_a + eta_c * z_b_i_at_beta), witness_label("z_a", i))
.add(-t_at_beta * v_X_at_beta * combiner, witness_label("w", i));
}
lincheck_sumcheck
.add(r_alpha_at_beta * eta_b * batch_z_b_at_beta, LCTerm::One)
.add(-t_at_beta * combined_x_at_beta, LCTerm::One)
.add(-v_H_at_beta, "h_1")
.add(-beta * g_1_at_beta, LCTerm::One);
lincheck_sumcheck
};
debug_assert!(evals.get_lc_eval(&lincheck_sumcheck, beta)?.is_zero());
for z_b in z_b_s {
linear_combinations.insert(z_b.label.clone(), z_b);
}
linear_combinations.insert("g_1".into(), g_1);
linear_combinations.insert("lincheck_sumcheck".into(), lincheck_sumcheck);
end_timer!(lincheck_time);
let mut matrix_sumcheck = LinearCombination::empty("matrix_sumcheck");
let g_a = LinearCombination::new("g_a", [(F::one(), "g_a")]);
let g_a_at_gamma = evals.get_lc_eval(&g_a, gamma)?;
let selector_a = largest_non_zero_domain.evaluate_selector_polynomial(non_zero_a_domain, gamma);
let lhs_a =
Self::construct_lhs("a", alpha, beta, gamma, v_H_at_alpha * v_H_at_beta, g_a_at_gamma, *sum_a, selector_a);
matrix_sumcheck += &lhs_a;
let g_b = LinearCombination::new("g_b", [(F::one(), "g_b")]);
let g_b_at_gamma = evals.get_lc_eval(&g_b, gamma)?;
let selector_b = largest_non_zero_domain.evaluate_selector_polynomial(non_zero_b_domain, gamma);
let lhs_b =
Self::construct_lhs("b", alpha, beta, gamma, v_H_at_alpha * v_H_at_beta, g_b_at_gamma, *sum_b, selector_b);
matrix_sumcheck += (r_b, &lhs_b);
let g_c = LinearCombination::new("g_c", [(F::one(), "g_c")]);
let g_c_at_gamma = evals.get_lc_eval(&g_c, gamma)?;
let selector_c = largest_non_zero_domain.evaluate_selector_polynomial(non_zero_c_domain, gamma);
let lhs_c =
Self::construct_lhs("c", alpha, beta, gamma, v_H_at_alpha * v_H_at_beta, g_c_at_gamma, *sum_c, selector_c);
matrix_sumcheck += (r_c, &lhs_c);
matrix_sumcheck -=
&LinearCombination::new("h_2", [(largest_non_zero_domain.evaluate_vanishing_polynomial(gamma), "h_2")]);
debug_assert!(evals.get_lc_eval(&matrix_sumcheck, gamma)?.is_zero());
linear_combinations.insert("g_a".into(), g_a);
linear_combinations.insert("g_b".into(), g_b);
linear_combinations.insert("g_c".into(), g_c);
linear_combinations.insert("matrix_sumcheck".into(), matrix_sumcheck);
Ok(linear_combinations)
}
#[allow(clippy::too_many_arguments)]
fn construct_lhs(
label: &str,
alpha: F,
beta: F,
gamma: F,
v_h_at_alpha_beta: F,
g_at_gamma: F,
sum: F,
selector_at_gamma: F,
) -> LinearCombination<F> {
let a =
LinearCombination::new("a_poly_".to_string() + label, [(v_h_at_alpha_beta, "val_".to_string() + label)]);
let alpha_beta = alpha * beta;
let mut b = LinearCombination::new("denom_".to_string() + label, [
(alpha_beta, LCTerm::One),
(-alpha, ("row_".to_string() + label).into()),
(-beta, ("col_".to_string() + label).into()),
(F::one(), ("row_col_".to_string() + label).into()),
]);
b *= gamma * g_at_gamma + sum;
let mut lhs = a;
lhs -= &b;
lhs *= selector_at_gamma;
lhs
}
}
pub trait EvaluationsProvider<F: PrimeField>: core::fmt::Debug {
fn get_lc_eval(&self, lc: &LinearCombination<F>, point: F) -> Result<F, AHPError>;
}
impl<'a, F: PrimeField> EvaluationsProvider<F> for crate::polycommit::sonic_pc::Evaluations<'a, F> {
fn get_lc_eval(&self, lc: &LinearCombination<F>, point: F) -> Result<F, AHPError> {
let key = (lc.label.clone(), point);
self.get(&key).copied().ok_or_else(|| AHPError::MissingEval(lc.label.clone()))
}
}
impl<F, T> EvaluationsProvider<F> for Vec<T>
where
F: PrimeField,
T: Borrow<LabeledPolynomial<F>> + core::fmt::Debug,
{
fn get_lc_eval(&self, lc: &LinearCombination<F>, point: F) -> Result<F, AHPError> {
let mut eval = F::zero();
for (coeff, term) in lc.iter() {
let value = if let LCTerm::PolyLabel(label) = term {
self.iter()
.find(|p| (*p).borrow().label() == label)
.ok_or_else(|| AHPError::MissingEval(format!("Missing {} for {}", label, lc.label)))?
.borrow()
.evaluate(point)
} else {
assert!(term.is_one());
F::one()
};
eval += &(*coeff * value)
}
Ok(eval)
}
}
pub trait UnnormalizedBivariateLagrangePoly<F: PrimeField> {
fn eval_unnormalized_bivariate_lagrange_poly(&self, x: F, y: F) -> F;
fn batch_eval_unnormalized_bivariate_lagrange_poly_with_diff_inputs(&self, x: F) -> Vec<F>;
fn batch_eval_unnormalized_bivariate_lagrange_poly_with_diff_inputs_over_domain(
&self,
x: F,
domain: &EvaluationDomain<F>,
) -> Vec<F>;
fn batch_eval_unnormalized_bivariate_lagrange_poly_with_same_inputs(&self) -> Vec<F>;
}
impl<F: PrimeField> UnnormalizedBivariateLagrangePoly<F> for EvaluationDomain<F> {
fn eval_unnormalized_bivariate_lagrange_poly(&self, x: F, y: F) -> F {
if x != y {
(self.evaluate_vanishing_polynomial(x) - self.evaluate_vanishing_polynomial(y)) / (x - y)
} else {
self.size_as_field_element * x.pow([(self.size() - 1) as u64])
}
}
fn batch_eval_unnormalized_bivariate_lagrange_poly_with_diff_inputs_over_domain(
&self,
x: F,
domain: &EvaluationDomain<F>,
) -> Vec<F> {
use snarkvm_utilities::{cfg_iter, cfg_iter_mut};
#[cfg(feature = "parallel")]
use rayon::prelude::*;
let vanish_x = self.evaluate_vanishing_polynomial(x);
let elements = domain.elements().collect::<Vec<_>>();
let mut denoms = cfg_iter!(elements).map(|e| x - e).collect::<Vec<_>>();
if domain.size() <= self.size() {
snarkvm_fields::batch_inversion_and_mul(&mut denoms, &vanish_x);
} else {
snarkvm_fields::batch_inversion(&mut denoms);
let ratio = domain.size() / self.size();
let mut numerators = vec![vanish_x; domain.size()];
cfg_iter_mut!(numerators).zip_eq(elements).enumerate().for_each(|(i, (n, e))| {
if i % ratio != 0 {
*n -= self.evaluate_vanishing_polynomial(e);
}
});
cfg_iter_mut!(denoms).zip_eq(numerators).for_each(|(d, e)| *d *= e);
}
denoms
}
fn batch_eval_unnormalized_bivariate_lagrange_poly_with_diff_inputs(&self, x: F) -> Vec<F> {
self.batch_eval_unnormalized_bivariate_lagrange_poly_with_diff_inputs_over_domain(x, self)
}
fn batch_eval_unnormalized_bivariate_lagrange_poly_with_same_inputs(&self) -> Vec<F> {
let mut elems: Vec<F> = self.elements().map(|e| e * self.size_as_field_element).collect();
elems[1..].reverse();
elems
}
}
pub trait SelectorPolynomial<F: PrimeField> {
fn evaluate_selector_polynomial(&self, other: EvaluationDomain<F>, point: F) -> F;
}
impl<F: PrimeField> SelectorPolynomial<F> for EvaluationDomain<F> {
fn evaluate_selector_polynomial(&self, other: EvaluationDomain<F>, point: F) -> F {
let numerator = self.evaluate_vanishing_polynomial(point) * other.size_as_field_element;
let denominator = other.evaluate_vanishing_polynomial(point) * self.size_as_field_element;
numerator / denominator
}
}
#[cfg(test)]
mod tests {
use super::*;
use crate::fft::{DensePolynomial, Evaluations};
use snarkvm_curves::bls12_377::fr::Fr;
use snarkvm_fields::{One, Zero};
use snarkvm_utilities::rand::{TestRng, Uniform};
#[test]
fn domain_unnormalized_bivariate_lagrange_poly() {
for domain_size in 1..10 {
let domain = EvaluationDomain::<Fr>::new(1 << domain_size).unwrap();
let manual: Vec<_> =
domain.elements().map(|elem| domain.eval_unnormalized_bivariate_lagrange_poly(elem, elem)).collect();
let fast = domain.batch_eval_unnormalized_bivariate_lagrange_poly_with_same_inputs();
assert_eq!(fast, manual);
}
}
#[test]
fn domain_unnormalized_bivariate_lagrange_poly_diff_inputs() {
let rng = &mut TestRng::default();
for domain_size in 1..10 {
let domain = EvaluationDomain::<Fr>::new(1 << domain_size).unwrap();
let x = Fr::rand(rng);
let manual: Vec<_> =
domain.elements().map(|y| domain.eval_unnormalized_bivariate_lagrange_poly(x, y)).collect();
let fast = domain.batch_eval_unnormalized_bivariate_lagrange_poly_with_diff_inputs(x);
assert_eq!(fast, manual);
}
}
#[test]
fn domain_unnormalized_bivariate_lagrange_poly_diff_inputs_over_domain() {
let rng = &mut TestRng::default();
for domain_size in 1..10 {
let domain = EvaluationDomain::<Fr>::new(1 << domain_size).unwrap();
let x = Fr::rand(rng);
for other_domain_size in 1..10 {
let other = EvaluationDomain::<Fr>::new(1 << other_domain_size).unwrap();
let manual: Vec<_> =
other.elements().map(|y| domain.eval_unnormalized_bivariate_lagrange_poly(x, y)).collect();
let fast =
domain.batch_eval_unnormalized_bivariate_lagrange_poly_with_diff_inputs_over_domain(x, &other);
assert_eq!(fast, manual, "failed for self {:?} and other {:?}", domain, other);
}
}
}
#[test]
fn test_summation() {
let rng = &mut TestRng::default();
let size = 1 << 4;
let domain = EvaluationDomain::<Fr>::new(1 << 4).unwrap();
let size_as_fe = domain.size_as_field_element;
let poly = DensePolynomial::rand(size, rng);
let mut sum: Fr = Fr::zero();
for eval in domain.elements().map(|e| poly.evaluate(e)) {
sum += &eval;
}
let first = poly.coeffs[0] * size_as_fe;
let last = *poly.coeffs.last().unwrap() * size_as_fe;
println!("sum: {:?}", sum);
println!("a_0: {:?}", first);
println!("a_n: {:?}", last);
println!("first + last: {:?}\n", first + last);
assert_eq!(sum, first + last);
}
#[test]
fn test_alternator_polynomial() {
let mut rng = TestRng::default();
for i in 1..10 {
for j in 1..i {
let domain_i = EvaluationDomain::<Fr>::new(1 << i).unwrap();
let domain_j = EvaluationDomain::<Fr>::new(1 << j).unwrap();
let point = domain_j.sample_element_outside_domain(&mut rng);
let j_elements = domain_j.elements().collect::<Vec<_>>();
let slow_selector = {
let evals = domain_i
.elements()
.map(|e| if j_elements.contains(&e) { Fr::one() } else { Fr::zero() })
.collect();
Evaluations::from_vec_and_domain(evals, domain_i).interpolate()
};
assert_eq!(slow_selector.evaluate(point), domain_i.evaluate_selector_polynomial(domain_j, point));
for element in domain_i.elements() {
if j_elements.contains(&element) {
assert_eq!(slow_selector.evaluate(element), Fr::one(), "failed for {} vs {}", i, j);
} else {
assert_eq!(slow_selector.evaluate(element), Fr::zero());
}
}
}
}
}
}