1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
use smallvec::SmallVec;
use snarkvm_fields::{PrimeField, ToConstraintField};
use snarkvm_utilities::FromBits;
use core::fmt::Debug;
pub trait AlgebraicSponge<F: PrimeField, const RATE: usize>: Clone + Debug {
type Parameters;
fn sample_parameters() -> Self::Parameters;
fn new_with_parameters(params: &Self::Parameters) -> Self;
fn new() -> Self {
let parameters = Self::sample_parameters();
Self::new_with_parameters(¶meters)
}
fn absorb_native_field_elements<T: ToConstraintField<F>>(&mut self, elements: &[T]);
fn absorb_nonnative_field_elements<Target: PrimeField>(&mut self, elements: impl IntoIterator<Item = Target>);
fn absorb_bytes(&mut self, elements: &[u8]) {
let capacity = F::size_in_bits() - 1;
let mut bits = Vec::<bool>::new();
for elem in elements {
bits.append(&mut vec![
elem & 128 != 0,
elem & 64 != 0,
elem & 32 != 0,
elem & 16 != 0,
elem & 8 != 0,
elem & 4 != 0,
elem & 2 != 0,
elem & 1 != 0,
]);
}
let elements = bits
.chunks(capacity)
.map(|bits| F::from_bigint(F::BigInteger::from_bits_be(bits).unwrap()).unwrap())
.collect::<SmallVec<[F; 10]>>();
self.absorb_native_field_elements(&elements);
}
fn squeeze_native_field_elements(&mut self, num: usize) -> SmallVec<[F; 10]>;
fn squeeze_nonnative_field_elements<Target: PrimeField>(&mut self, num: usize) -> SmallVec<[Target; 10]>;
fn squeeze_short_nonnative_field_elements<Target: PrimeField>(&mut self, num: usize) -> SmallVec<[Target; 10]>;
fn squeeze_short_nonnative_field_element<Target: PrimeField>(&mut self) -> Target {
self.squeeze_short_nonnative_field_elements(1)[0]
}
}
#[derive(PartialEq, Eq, Clone, Debug)]
pub enum DuplexSpongeMode {
Absorbing {
next_absorb_index: usize,
},
Squeezing {
next_squeeze_index: usize,
},
}
pub(crate) mod nonnative_params {
#[macro_export]
macro_rules! overhead {
($x:expr) => {{
use snarkvm_utilities::ToBits;
let num = $x;
let num_bits = num.to_bigint().to_bits_be();
let mut skipped_bits = 0;
for b in num_bits.iter() {
if *b == false {
skipped_bits += 1;
} else {
break;
}
}
let mut is_power_of_2 = true;
for b in num_bits.iter().skip(skipped_bits + 1) {
if *b == true {
is_power_of_2 = false;
}
}
if is_power_of_2 { num_bits.len() - skipped_bits } else { num_bits.len() - skipped_bits + 1 }
}};
}
#[derive(Clone, Debug)]
pub struct NonNativeFieldParams {
pub num_limbs: usize,
pub bits_per_limb: usize,
}
#[must_use]
pub const fn get_params(
target_field_size: usize,
base_field_size: usize,
optimization_type: OptimizationType,
) -> NonNativeFieldParams {
let (num_of_limbs, limb_size) = find_parameters(base_field_size, target_field_size, optimization_type);
NonNativeFieldParams { num_limbs: num_of_limbs, bits_per_limb: limb_size }
}
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub enum OptimizationType {
Constraints,
Weight,
}
pub const fn find_parameters(
base_field_prime_length: usize,
target_field_prime_bit_length: usize,
optimization_type: OptimizationType,
) -> (usize, usize) {
let mut found = false;
let mut min_cost = 0usize;
let mut min_cost_limb_size = 0usize;
let mut min_cost_num_of_limbs = 0usize;
let surfeit = 10;
let mut max_limb_size = (base_field_prime_length - 1 - surfeit - 1) / 2 - 1;
if max_limb_size > target_field_prime_bit_length {
max_limb_size = target_field_prime_bit_length;
}
let mut limb_size = 1;
while limb_size <= max_limb_size {
let num_of_limbs = (target_field_prime_bit_length + limb_size - 1) / limb_size;
let group_size = (base_field_prime_length - 1 - surfeit - 1 - 1 - limb_size + limb_size - 1) / limb_size;
let num_of_groups = (2 * num_of_limbs - 1 + group_size - 1) / group_size;
let mut this_cost = 0;
match optimization_type {
OptimizationType::Constraints => {
this_cost += 2 * num_of_limbs - 1;
}
OptimizationType::Weight => {
this_cost += 6 * num_of_limbs * num_of_limbs;
}
};
match optimization_type {
OptimizationType::Constraints => {
this_cost += target_field_prime_bit_length; this_cost += target_field_prime_bit_length + num_of_limbs; this_cost += num_of_groups + (num_of_groups - 1) * (limb_size * 2 + surfeit) + 1;
}
OptimizationType::Weight => {
this_cost += target_field_prime_bit_length * 3 + target_field_prime_bit_length; this_cost += target_field_prime_bit_length * 3 + target_field_prime_bit_length + num_of_limbs; this_cost += num_of_limbs * num_of_limbs + 2 * (2 * num_of_limbs - 1); this_cost += num_of_limbs
+ num_of_groups
+ 6 * num_of_groups
+ (num_of_groups - 1) * (2 * limb_size + surfeit) * 4
+ 2; }
};
if !found || this_cost < min_cost {
found = true;
min_cost = this_cost;
min_cost_limb_size = limb_size;
min_cost_num_of_limbs = num_of_limbs;
}
limb_size += 1;
}
(min_cost_num_of_limbs, min_cost_limb_size)
}
}