1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
use crate::{hash_to_curve::hash_to_curve, CRHError, CRH};
use snarkvm_curves::{AffineCurve, ProjectiveCurve};
use snarkvm_fields::{ConstraintFieldError, Field, ToConstraintField};
use snarkvm_utilities::{FromBytes, ToBytes};
use std::{
borrow::Cow,
fmt::Debug,
io::{Read, Result as IoResult, Write},
};
#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord)]
pub struct PedersenCRH<G: ProjectiveCurve, const NUM_WINDOWS: usize, const WINDOW_SIZE: usize> {
pub bases: Vec<Vec<G>>,
}
impl<G: ProjectiveCurve, const NUM_WINDOWS: usize, const WINDOW_SIZE: usize> CRH
for PedersenCRH<G, NUM_WINDOWS, WINDOW_SIZE>
{
type Output = G::Affine;
type Parameters = Vec<Vec<G>>;
fn setup(message: &str) -> Self {
Self::bases(message).into()
}
fn hash_bits(&self, input: &[bool]) -> Result<Self::Output, CRHError> {
if input.len() > WINDOW_SIZE * NUM_WINDOWS {
return Err(CRHError::IncorrectInputLength(input.len(), WINDOW_SIZE, NUM_WINDOWS));
}
let mut padded_input = Cow::Borrowed(input);
if padded_input.len() < WINDOW_SIZE * NUM_WINDOWS {
padded_input.to_mut().resize(WINDOW_SIZE * NUM_WINDOWS, false);
}
if self.bases.len() != NUM_WINDOWS {
return Err(CRHError::IncorrectParameterSize(
self.bases[0].len(),
self.bases.len(),
WINDOW_SIZE,
NUM_WINDOWS,
));
}
let result = padded_input
.chunks(WINDOW_SIZE)
.zip(&self.bases)
.map(|(bits, powers)| {
let mut encoded = G::zero();
for (bit, base) in bits.iter().zip(powers.iter()) {
if *bit {
encoded += base;
}
}
encoded
})
.fold(G::zero(), |a, b| a + b);
Ok(result.into_affine())
}
fn parameters(&self) -> &Self::Parameters {
&self.bases
}
}
impl<G: ProjectiveCurve, const NUM_WINDOWS: usize, const WINDOW_SIZE: usize> PedersenCRH<G, NUM_WINDOWS, WINDOW_SIZE> {
fn bases(message: &str) -> Vec<Vec<G>> {
let mut bases = Vec::with_capacity(NUM_WINDOWS);
for index in 0..NUM_WINDOWS {
let indexed_message = format!("{} at {}", message, index);
let (generator, _, _) = hash_to_curve::<G::Affine>(&indexed_message);
let mut base = generator.into_projective();
let mut powers = Vec::with_capacity(WINDOW_SIZE);
for _ in 0..WINDOW_SIZE {
powers.push(base);
base.double_in_place();
}
bases.push(powers);
}
bases
}
}
impl<G: ProjectiveCurve, const NUM_WINDOWS: usize, const WINDOW_SIZE: usize> From<Vec<Vec<G>>>
for PedersenCRH<G, NUM_WINDOWS, WINDOW_SIZE>
{
fn from(bases: Vec<Vec<G>>) -> Self {
Self { bases }
}
}
impl<G: ProjectiveCurve, const NUM_WINDOWS: usize, const WINDOW_SIZE: usize> ToBytes
for PedersenCRH<G, NUM_WINDOWS, WINDOW_SIZE>
{
fn write_le<W: Write>(&self, mut writer: W) -> IoResult<()> {
(self.bases.len() as u32).write_le(&mut writer)?;
for base in &self.bases {
(base.len() as u32).write_le(&mut writer)?;
for g in base {
g.write_le(&mut writer)?;
}
}
Ok(())
}
}
impl<G: ProjectiveCurve, const NUM_WINDOWS: usize, const WINDOW_SIZE: usize> FromBytes
for PedersenCRH<G, NUM_WINDOWS, WINDOW_SIZE>
{
#[inline]
fn read_le<R: Read>(mut reader: R) -> IoResult<Self> {
let num_bases: u32 = FromBytes::read_le(&mut reader)?;
let mut bases = Vec::with_capacity(num_bases as usize);
for _ in 0..num_bases {
let base_len: u32 = FromBytes::read_le(&mut reader)?;
let mut base = Vec::with_capacity(base_len as usize);
for _ in 0..base_len {
let g: G = FromBytes::read_le(&mut reader)?;
base.push(g);
}
bases.push(base);
}
Ok(Self { bases })
}
}
impl<F: Field, G: ProjectiveCurve + ToConstraintField<F>, const NUM_WINDOWS: usize, const WINDOW_SIZE: usize>
ToConstraintField<F> for PedersenCRH<G, NUM_WINDOWS, WINDOW_SIZE>
{
#[inline]
fn to_field_elements(&self) -> Result<Vec<F>, ConstraintFieldError> {
Ok(Vec::new())
}
}