1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
// Copyright (C) 2019-2021 Aleo Systems Inc.
// This file is part of the snarkVM library.

// The snarkVM library is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.

// The snarkVM library is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.

// You should have received a copy of the GNU General Public License
// along with the snarkVM library. If not, see <https://www.gnu.org/licenses/>.

use crate::{crh::PedersenCRH, hash_to_curve::hash_to_curve, CommitmentError, CommitmentScheme, CRH};
use snarkvm_curves::{AffineCurve, ProjectiveCurve};
use snarkvm_fields::{ConstraintFieldError, Field, PrimeField, ToConstraintField};
use snarkvm_utilities::{BitIteratorLE, FromBytes, ToBytes};

use std::io::{Read, Result as IoResult, Write};

#[derive(Debug, Clone, PartialEq, Eq, PartialOrd, Ord)]
pub struct PedersenCommitment<G: ProjectiveCurve, const NUM_WINDOWS: usize, const WINDOW_SIZE: usize> {
    pub crh: PedersenCRH<G, NUM_WINDOWS, WINDOW_SIZE>,
    pub random_base: Vec<G>,
}

impl<G: ProjectiveCurve, const NUM_WINDOWS: usize, const WINDOW_SIZE: usize> CommitmentScheme
    for PedersenCommitment<G, NUM_WINDOWS, WINDOW_SIZE>
{
    type Output = G::Affine;
    type Parameters = (Vec<Vec<G>>, Vec<G>);
    type Randomness = G::ScalarField;

    fn setup(message: &str) -> Self {
        // First, compute the bases.
        let crh = PedersenCRH::setup(message);

        // Next, compute the random base.
        let random_base_message = format!("{} for random base", message);
        let (generator, _, _) = hash_to_curve::<G::Affine>(&random_base_message);
        let mut base = generator.into_projective();
        let mut random_base = Vec::with_capacity(WINDOW_SIZE);
        for _ in 0..WINDOW_SIZE {
            random_base.push(base);
            base.double_in_place();
        }
        Self { crh, random_base }
    }

    fn commit(&self, input: &[u8], randomness: &Self::Randomness) -> Result<Self::Output, CommitmentError> {
        // If the input is too long, return an error.
        if input.len() > WINDOW_SIZE * NUM_WINDOWS {
            return Err(CommitmentError::IncorrectInputLength(
                input.len(),
                WINDOW_SIZE,
                NUM_WINDOWS,
            ));
        }

        let mut output = self.crh.hash(input)?.into_projective();

        // Compute h^r.
        let scalar_bits = BitIteratorLE::new(randomness.to_repr());
        for (bit, power) in scalar_bits.into_iter().zip(&self.random_base) {
            if bit {
                output += power
            }
        }

        Ok(output.into_affine())
    }

    fn parameters(&self) -> Self::Parameters {
        (self.crh.bases.clone(), self.random_base.clone())
    }
}

impl<G: ProjectiveCurve, const NUM_WINDOWS: usize, const WINDOW_SIZE: usize> From<(Vec<Vec<G>>, Vec<G>)>
    for PedersenCommitment<G, NUM_WINDOWS, WINDOW_SIZE>
{
    fn from((bases, random_base): (Vec<Vec<G>>, Vec<G>)) -> Self {
        Self {
            crh: bases.into(),
            random_base,
        }
    }
}

impl<G: ProjectiveCurve, const NUM_WINDOWS: usize, const WINDOW_SIZE: usize> ToBytes
    for PedersenCommitment<G, NUM_WINDOWS, WINDOW_SIZE>
{
    fn write_le<W: Write>(&self, mut writer: W) -> IoResult<()> {
        (self.crh.bases.len() as u32).write_le(&mut writer)?;
        for base in &self.crh.bases {
            (base.len() as u32).write_le(&mut writer)?;
            for g in base {
                g.write_le(&mut writer)?;
            }
        }

        (self.random_base.len() as u32).write_le(&mut writer)?;
        for g in &self.random_base {
            g.write_le(&mut writer)?;
        }

        Ok(())
    }
}

impl<G: ProjectiveCurve, const NUM_WINDOWS: usize, const WINDOW_SIZE: usize> FromBytes
    for PedersenCommitment<G, NUM_WINDOWS, WINDOW_SIZE>
{
    #[inline]
    fn read_le<R: Read>(mut reader: R) -> IoResult<Self> {
        let num_bases: u32 = FromBytes::read_le(&mut reader)?;
        let mut bases = Vec::with_capacity(num_bases as usize);
        for _ in 0..num_bases {
            let base_len: u32 = FromBytes::read_le(&mut reader)?;
            let mut base = Vec::with_capacity(base_len as usize);

            for _ in 0..base_len {
                let g: G = FromBytes::read_le(&mut reader)?;
                base.push(g);
            }
            bases.push(base);
        }

        let random_base_len: u32 = FromBytes::read_le(&mut reader)?;
        let mut random_base = Vec::with_capacity(random_base_len as usize);
        for _ in 0..random_base_len {
            let g: G = FromBytes::read_le(&mut reader)?;
            random_base.push(g);
        }

        Ok(Self {
            crh: PedersenCRH::from(bases),
            random_base,
        })
    }
}

impl<F: Field, G: ProjectiveCurve + ToConstraintField<F>, const NUM_WINDOWS: usize, const WINDOW_SIZE: usize>
    ToConstraintField<F> for PedersenCommitment<G, NUM_WINDOWS, WINDOW_SIZE>
{
    #[inline]
    fn to_field_elements(&self) -> Result<Vec<F>, ConstraintFieldError> {
        Ok(Vec::new())
    }
}