1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
use crate::{crh::BHPCRH, hash_to_curve::hash_to_curve, CommitmentError, CommitmentScheme, CRH};
use snarkvm_curves::{AffineCurve, ProjectiveCurve};
use snarkvm_fields::{ConstraintFieldError, Field, PrimeField, ToConstraintField};
use snarkvm_utilities::{BitIteratorLE, FromBytes, ToBytes};
use std::{
fmt::Debug,
io::{Read, Result as IoResult, Write},
sync::Arc,
};
#[derive(Debug, Clone, PartialEq, Eq)]
pub struct BHPCommitment<G: ProjectiveCurve, const NUM_WINDOWS: usize, const WINDOW_SIZE: usize> {
pub bhp_crh: BHPCRH<G, NUM_WINDOWS, WINDOW_SIZE>,
pub random_base: Vec<G>,
}
impl<G: ProjectiveCurve, const NUM_WINDOWS: usize, const WINDOW_SIZE: usize> CommitmentScheme
for BHPCommitment<G, NUM_WINDOWS, WINDOW_SIZE>
{
type Output = <G::Affine as AffineCurve>::BaseField;
type Parameters = (Arc<Vec<Vec<G>>>, Vec<G>);
type Randomness = G::ScalarField;
fn setup(message: &str) -> Self {
let bhp = BHPCRH::<G, NUM_WINDOWS, WINDOW_SIZE>::setup(message);
let random_base_message = format!("{} for random base", message);
let (generator, _, _) = hash_to_curve::<G::Affine>(&random_base_message);
let mut base = generator.into_projective();
let mut random_base = Vec::with_capacity(WINDOW_SIZE);
for _ in 0..WINDOW_SIZE {
random_base.push(base);
base.double_in_place();
}
Self {
bhp_crh: bhp,
random_base,
}
}
fn commit(&self, input: &[u8], randomness: &Self::Randomness) -> Result<Self::Output, CommitmentError> {
let num_bits = input.len() * 8;
if num_bits > WINDOW_SIZE * NUM_WINDOWS {
return Err(CommitmentError::IncorrectInputLength(
input.len(),
WINDOW_SIZE,
NUM_WINDOWS,
));
}
let bits = input
.iter()
.flat_map(|&byte| (0..8).map(move |i| (byte >> i) & 1u8 == 1u8));
let mut output = self.bhp_crh.hash_bits_inner(bits, num_bits)?;
let scalar_bits = BitIteratorLE::new(randomness.to_repr());
for (bit, power) in scalar_bits.into_iter().zip(&self.random_base) {
if bit {
output += power
}
}
let affine = output.into_affine();
debug_assert!(affine.is_in_correct_subgroup_assuming_on_curve());
Ok(affine.to_x_coordinate())
}
fn parameters(&self) -> Self::Parameters {
(self.bhp_crh.bases.clone(), self.random_base.clone())
}
}
impl<G: ProjectiveCurve, const NUM_WINDOWS: usize, const WINDOW_SIZE: usize> From<(Arc<Vec<Vec<G>>>, Vec<G>)>
for BHPCommitment<G, NUM_WINDOWS, WINDOW_SIZE>
{
fn from((bases, random_base): (Arc<Vec<Vec<G>>>, Vec<G>)) -> Self {
Self {
bhp_crh: bases.into(),
random_base,
}
}
}
impl<G: ProjectiveCurve, const NUM_WINDOWS: usize, const WINDOW_SIZE: usize> ToBytes
for BHPCommitment<G, NUM_WINDOWS, WINDOW_SIZE>
{
fn write_le<W: Write>(&self, mut writer: W) -> IoResult<()> {
self.bhp_crh.write_le(&mut writer)?;
(self.random_base.len() as u32).write_le(&mut writer)?;
for g in &self.random_base {
g.write_le(&mut writer)?;
}
Ok(())
}
}
impl<G: ProjectiveCurve, const NUM_WINDOWS: usize, const WINDOW_SIZE: usize> FromBytes
for BHPCommitment<G, NUM_WINDOWS, WINDOW_SIZE>
{
#[inline]
fn read_le<R: Read>(mut reader: R) -> IoResult<Self> {
let bhp = BHPCRH::read_le(&mut reader)?;
let random_base_len: u32 = FromBytes::read_le(&mut reader)?;
let mut random_base = Vec::with_capacity(random_base_len as usize);
for _ in 0..random_base_len {
let g: G = FromBytes::read_le(&mut reader)?;
random_base.push(g);
}
Ok(Self {
bhp_crh: bhp,
random_base,
})
}
}
impl<F: Field, G: ProjectiveCurve + ToConstraintField<F>, const NUM_WINDOWS: usize, const WINDOW_SIZE: usize>
ToConstraintField<F> for BHPCommitment<G, NUM_WINDOWS, WINDOW_SIZE>
{
#[inline]
fn to_field_elements(&self) -> Result<Vec<F>, ConstraintFieldError> {
Ok(Vec::new())
}
}