1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
use crate::merkle_tree::{MerklePath, MerkleTreeDigest};
use snarkvm_errors::algorithms::MerkleError;
use snarkvm_models::algorithms::{MerkleParameters, CRH};
use snarkvm_utilities::ToBytes;
#[derive(Default)]
pub struct MerkleTree<P: MerkleParameters> {
root: Option<MerkleTreeDigest<P>>,
tree: Vec<MerkleTreeDigest<P>>,
hashed_leaves: Vec<MerkleTreeDigest<P>>,
padding_tree: Vec<(MerkleTreeDigest<P>, MerkleTreeDigest<P>)>,
parameters: P,
}
impl<P: MerkleParameters> MerkleTree<P> {
pub const DEPTH: u8 = P::DEPTH as u8;
pub fn new<L: ToBytes>(parameters: P, leaves: &[L]) -> Result<Self, MerkleError> {
let new_time = start_timer!(|| "MerkleTree::new");
let last_level_size = leaves.len().next_power_of_two();
let tree_size = 2 * last_level_size - 1;
let tree_depth = tree_depth(tree_size);
if tree_depth > Self::DEPTH as usize {
return Err(MerkleError::InvalidTreeDepth(tree_depth, Self::DEPTH as usize));
}
let empty_hash = parameters.hash_empty()?;
let mut tree = vec![empty_hash.clone(); tree_size];
let mut index = 0;
let mut level_indices = Vec::with_capacity(tree_depth);
for _ in 0..=tree_depth {
level_indices.push(index);
index = left_child(index);
}
let hash_input_size_in_bytes = (P::H::INPUT_SIZE_BITS / 8) * 2;
let last_level_index = level_indices.pop().unwrap_or(0);
let mut buffer = vec![0u8; hash_input_size_in_bytes];
for (i, leaf) in leaves.iter().enumerate() {
tree[last_level_index + i] = parameters.hash_leaf(leaf, &mut buffer)?;
}
let mut upper_bound = last_level_index;
let mut buffer = vec![0u8; hash_input_size_in_bytes];
level_indices.reverse();
for &start_index in &level_indices {
for current_index in start_index..upper_bound {
let left_index = left_child(current_index);
let right_index = right_child(current_index);
tree[current_index] = parameters.hash_inner_node(&tree[left_index], &tree[right_index], &mut buffer)?;
}
upper_bound = start_index;
}
let mut current_depth = tree_depth;
let mut padding_tree = Vec::with_capacity((Self::DEPTH as usize).saturating_sub(current_depth + 1));
let mut current_hash = tree[0].clone();
while current_depth < Self::DEPTH as usize {
current_hash = parameters.hash_inner_node(¤t_hash, &empty_hash, &mut buffer)?;
if current_depth < Self::DEPTH as usize - 1 {
padding_tree.push((current_hash.clone(), empty_hash.clone()));
}
current_depth += 1;
}
let root_hash = current_hash;
end_timer!(new_time);
let hashed_leaves = tree[last_level_index..].to_vec();
Ok(MerkleTree {
tree,
padding_tree,
hashed_leaves,
parameters,
root: Some(root_hash),
})
}
#[inline]
pub fn root(&self) -> <P::H as CRH>::Output {
self.root.clone().unwrap()
}
#[inline]
pub fn hashed_leaves(&self) -> Vec<<P::H as CRH>::Output> {
self.hashed_leaves.clone()
}
pub fn generate_proof<L: ToBytes>(&self, index: usize, leaf: &L) -> Result<MerklePath<P>, MerkleError> {
let prove_time = start_timer!(|| "MerkleTree::generate_proof");
let mut path = vec![];
let hash_input_size_in_bytes = (P::H::INPUT_SIZE_BITS / 8) * 2;
let mut buffer = vec![0u8; hash_input_size_in_bytes];
let leaf_hash = self.parameters.hash_leaf(leaf, &mut buffer)?;
let tree_depth = tree_depth(self.tree.len());
let tree_index = convert_index_to_last_level(index, tree_depth);
if leaf_hash != self.tree[tree_index] {
return Err(MerkleError::IncorrectLeafIndex(tree_index));
}
let mut current_node = tree_index;
while !is_root(current_node) {
let sibling_node = sibling(current_node).unwrap();
let (curr_hash, sibling_hash) = (self.tree[current_node].clone(), self.tree[sibling_node].clone());
if is_left_child(current_node) {
path.push((curr_hash, sibling_hash));
} else {
path.push((sibling_hash, curr_hash));
}
current_node = parent(current_node).unwrap();
}
if path.len() > Self::DEPTH as usize {
return Err(MerkleError::InvalidPathLength(path.len(), Self::DEPTH as usize));
}
if path.len() != Self::DEPTH as usize {
let empty_hash = self.parameters.hash_empty()?;
path.push((self.tree[0].clone(), empty_hash));
for &(ref hash, ref sibling_hash) in &self.padding_tree {
path.push((hash.clone(), sibling_hash.clone()));
}
}
end_timer!(prove_time);
if path.len() != Self::DEPTH as usize {
Err(MerkleError::IncorrectPathLength(path.len()))
} else {
Ok(MerklePath {
parameters: self.parameters.clone(),
path,
})
}
}
}
#[inline]
fn tree_depth(tree_size: usize) -> usize {
fn log2(number: usize) -> usize {
(number as f64).log2() as usize
}
log2(tree_size)
}
#[inline]
fn is_root(index: usize) -> bool {
index == 0
}
#[inline]
fn left_child(index: usize) -> usize {
2 * index + 1
}
#[inline]
fn right_child(index: usize) -> usize {
2 * index + 2
}
#[inline]
fn sibling(index: usize) -> Option<usize> {
if index == 0 {
None
} else if is_left_child(index) {
Some(index + 1)
} else {
Some(index - 1)
}
}
#[inline]
fn is_left_child(index: usize) -> bool {
index % 2 == 1
}
#[inline]
fn parent(index: usize) -> Option<usize> {
if index > 0 { Some((index - 1) >> 1) } else { None }
}
#[inline]
fn convert_index_to_last_level(index: usize, tree_depth: usize) -> usize {
index + (1 << tree_depth) - 1
}