1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
// Copyright (C) 2019-2023 Aleo Systems Inc.
// This file is part of the snarkOS library.

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at:
// http://www.apache.org/licenses/LICENSE-2.0

// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

use super::*;

use snarkos_node_messages::{BlockRequest, DisconnectReason, Message, MessageCodec, Pong, UnconfirmedTransaction};
use snarkos_node_tcp::{Connection, ConnectionSide, Tcp};
use snarkvm::prelude::{block::Transaction, Network};

use std::{io, net::SocketAddr};

impl<N: Network, C: ConsensusStorage<N>> P2P for Prover<N, C> {
    /// Returns a reference to the TCP instance.
    fn tcp(&self) -> &Tcp {
        self.router.tcp()
    }
}

#[async_trait]
impl<N: Network, C: ConsensusStorage<N>> Handshake for Prover<N, C> {
    /// Performs the handshake protocol.
    async fn perform_handshake(&self, mut connection: Connection) -> io::Result<Connection> {
        // Perform the handshake.
        let peer_addr = connection.addr();
        let conn_side = connection.side();
        let stream = self.borrow_stream(&mut connection);
        let genesis_header = *self.genesis.header();
        self.router.handshake(peer_addr, stream, conn_side, genesis_header).await?;

        Ok(connection)
    }
}

#[async_trait]
impl<N: Network, C: ConsensusStorage<N>> OnConnect for Prover<N, C>
where
    Self: Outbound<N>,
{
    async fn on_connect(&self, peer_addr: SocketAddr) {
        let peer_ip = if let Some(ip) = self.router.resolve_to_listener(&peer_addr) {
            ip
        } else {
            return;
        };

        // Send the first `Ping` message to the peer.
        self.send_ping(peer_ip, None);
    }
}

#[async_trait]
impl<N: Network, C: ConsensusStorage<N>> Disconnect for Prover<N, C> {
    /// Any extra operations to be performed during a disconnect.
    async fn handle_disconnect(&self, peer_addr: SocketAddr) {
        if let Some(peer_ip) = self.router.resolve_to_listener(&peer_addr) {
            self.router.remove_connected_peer(peer_ip);
        }
    }
}

#[async_trait]
impl<N: Network, C: ConsensusStorage<N>> Writing for Prover<N, C> {
    type Codec = MessageCodec<N>;
    type Message = Message<N>;

    /// Creates an [`Encoder`] used to write the outbound messages to the target stream.
    /// The `side` parameter indicates the connection side **from the node's perspective**.
    fn codec(&self, _addr: SocketAddr, _side: ConnectionSide) -> Self::Codec {
        Default::default()
    }
}

#[async_trait]
impl<N: Network, C: ConsensusStorage<N>> Reading for Prover<N, C> {
    type Codec = MessageCodec<N>;
    type Message = Message<N>;

    /// Creates a [`Decoder`] used to interpret messages from the network.
    /// The `side` param indicates the connection side **from the node's perspective**.
    fn codec(&self, _peer_addr: SocketAddr, _side: ConnectionSide) -> Self::Codec {
        Default::default()
    }

    /// Processes a message received from the network.
    async fn process_message(&self, peer_addr: SocketAddr, message: Self::Message) -> io::Result<()> {
        // Process the message. Disconnect if the peer violated the protocol.
        if let Err(error) = self.inbound(peer_addr, message).await {
            if let Some(peer_ip) = self.router().resolve_to_listener(&peer_addr) {
                warn!("Disconnecting from '{peer_addr}' - {error}");
                self.send(peer_ip, Message::Disconnect(DisconnectReason::ProtocolViolation.into()));
                // Disconnect from this peer.
                self.router().disconnect(peer_ip);
            }
        }
        Ok(())
    }
}

#[async_trait]
impl<N: Network, C: ConsensusStorage<N>> Routing<N> for Prover<N, C> {}

impl<N: Network, C: ConsensusStorage<N>> Heartbeat<N> for Prover<N, C> {}

impl<N: Network, C: ConsensusStorage<N>> Outbound<N> for Prover<N, C> {
    /// Returns a reference to the router.
    fn router(&self) -> &Router<N> {
        &self.router
    }
}

#[async_trait]
impl<N: Network, C: ConsensusStorage<N>> Inbound<N> for Prover<N, C> {
    /// Handles a `BlockRequest` message.
    fn block_request(&self, peer_ip: SocketAddr, _message: BlockRequest) -> bool {
        debug!("Disconnecting '{peer_ip}' for the following reason - {:?}", DisconnectReason::ProtocolViolation);
        false
    }

    /// Handles a `BlockResponse` message.
    fn block_response(&self, peer_ip: SocketAddr, _blocks: Vec<Block<N>>) -> bool {
        debug!("Disconnecting '{peer_ip}' for the following reason - {:?}", DisconnectReason::ProtocolViolation);
        false
    }

    /// Sleeps for a period and then sends a `Ping` message to the peer.
    fn pong(&self, peer_ip: SocketAddr, _message: Pong) -> bool {
        // Spawn an asynchronous task for the `Ping` request.
        let self_clone = self.clone();
        tokio::spawn(async move {
            // Sleep for the preset time before sending a `Ping` request.
            tokio::time::sleep(Duration::from_secs(Self::PING_SLEEP_IN_SECS)).await;
            // Check that the peer is still connected.
            if self_clone.router().is_connected(&peer_ip) {
                // Send a `Ping` message to the peer.
                self_clone.send_ping(peer_ip, None);
            }
        });
        true
    }

    /// Disconnects on receipt of a `PuzzleRequest` message.
    fn puzzle_request(&self, peer_ip: SocketAddr) -> bool {
        debug!("Disconnecting '{peer_ip}' for the following reason - {:?}", DisconnectReason::ProtocolViolation);
        false
    }

    /// Saves the latest epoch challenge and latest block header in the node.
    fn puzzle_response(&self, peer_ip: SocketAddr, epoch_challenge: EpochChallenge<N>, header: Header<N>) -> bool {
        // Retrieve the epoch number.
        let epoch_number = epoch_challenge.epoch_number();
        // Retrieve the block height.
        let block_height = header.height();

        info!(
            "Coinbase Puzzle (Epoch {epoch_number}, Block {block_height}, Coinbase Target {}, Proof Target {})",
            header.coinbase_target(),
            header.proof_target()
        );

        // Save the latest epoch challenge in the node.
        self.latest_epoch_challenge.write().replace(Arc::new(epoch_challenge));
        // Save the latest block header in the node.
        self.latest_block_header.write().replace(header);

        trace!("Received 'PuzzleResponse' from '{peer_ip}' (Epoch {epoch_number}, Block {block_height})");
        true
    }

    /// Propagates the unconfirmed solution to all connected validators.
    async fn unconfirmed_solution(
        &self,
        peer_ip: SocketAddr,
        serialized: UnconfirmedSolution<N>,
        solution: ProverSolution<N>,
    ) -> bool {
        // Retrieve the latest epoch challenge.
        let epoch_challenge = self.latest_epoch_challenge.read().clone();
        // Retrieve the latest proof target.
        let proof_target = self.latest_block_header.read().as_ref().map(|header| header.proof_target());

        if let (Some(epoch_challenge), Some(proof_target)) = (epoch_challenge, proof_target) {
            // Ensure that the prover solution is valid for the given epoch.
            let coinbase_puzzle = self.coinbase_puzzle.clone();
            let is_valid = tokio::task::spawn_blocking(move || {
                solution.verify(coinbase_puzzle.coinbase_verifying_key(), &epoch_challenge, proof_target)
            })
            .await;

            match is_valid {
                // If the solution is valid, propagate the `UnconfirmedSolution`.
                Ok(Ok(true)) => {
                    let message = Message::UnconfirmedSolution(serialized);
                    // Propagate the "UnconfirmedSolution" to the connected validators.
                    self.propagate_to_validators(message, &[peer_ip]);
                }
                Ok(Ok(false)) | Ok(Err(_)) => {
                    trace!("Invalid prover solution '{}' for the proof target.", solution.commitment())
                }
                Err(error) => warn!("Failed to verify the prover solution: {error}"),
            }
        }
        true
    }

    /// Handles an `UnconfirmedTransaction` message.
    fn unconfirmed_transaction(
        &self,
        _peer_ip: SocketAddr,
        _serialized: UnconfirmedTransaction<N>,
        _transaction: Transaction<N>,
    ) -> bool {
        true
    }
}