smooth_buffer/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
#![warn(clippy::std_instead_of_core, clippy::std_instead_of_alloc)]
#![no_std]
use core::slice::Iter;

mod float;
pub use float::Float;

/// Simple fixed size ringbuffer with fast averaging.
pub struct SmoothBuffer<const CAP: usize, T: Float> {
    data: [T; CAP],
    head: usize,
    sum: Option<T>,
    max: Option<T>,
    min: Option<T>,
    filled_len: usize,
}

impl<const CAP: usize, T: Float> Default for SmoothBuffer<CAP, T> {
    fn default() -> Self {
        Self::new()
    }
}

impl<const CAP: usize, T: Float> SmoothBuffer<CAP, T> {
    /// Creates a new, empty buffer.
    pub fn new() -> Self {
        SmoothBuffer {
            data: [T::default(); CAP],
            head: 0,
            sum: None,
            max: None,
            min: None,
            filled_len: 0,
        }
    }

    /// Creates a new buffer pre-populated with a value, filled to capacity.
    pub fn pre_filled(value: T) -> Self {
        SmoothBuffer {
            data: [value; CAP],
            head: CAP - 1,
            sum: Some(value * T::from_usize(CAP)),
            max: Some(value),
            min: Some(value),
            filled_len: CAP,
        }
    }

    /// Fast! Sum is always kept up to date on push. No need to iterate.
    pub fn average(&self) -> T {
        if self.filled_len > 0 {
            return self.sum.unwrap_or(T::zero()) / T::from_usize(self.filled_len);
        }
        T::zero()
    }

    /// Resets buffer to its default empty state.
    pub fn clear(&mut self) {
        for n in 0..self.data.len() {
            self.data[n] = T::zero();
        }
        self.sum = None;
        self.max = None;
        self.min = None;
        self.filled_len = 0;
        self.head = 0;
    }

    /// True is buffer is empty.
    pub fn is_empty(&self) -> bool {
        self.filled_len == 0
    }

    /// The largest value so far, if any.
    pub fn max(&self) -> T {
        self.max.unwrap_or(T::zero())
    }

    /// The smallest value so far, if any.
    pub fn min(&self) -> T {
        self.min.unwrap_or(T::zero())
    }

    /// The maximum number of items. Older items are discarded in favor of newer ones
    /// if capacity is exceeded.
    pub fn capacity(&self) -> usize {
        CAP
    }

    /// Current value count, will always be lower or equal to capacity.
    pub fn len(&self) -> usize {
        self.filled_len
    }

    /// Push a single value.
    pub fn push(&mut self, value: T) {
        match self.max {
            None => self.max = Some(value),
            Some(max) => self.max = Some(T::get_max(max, value)),
        }
        match self.min {
            None => self.min = Some(value),
            Some(min) => self.min = Some(T::get_min(min, value)),
        }
        match self.sum {
            None => self.sum = Some(value),
            Some(sum) => self.sum = Some(sum - self.data[self.head] + value),
        }

        // Push data into storage
        self.data[self.head] = value;
        self.head += 1;
        if self.head == CAP {
            self.head = 0
        }
        if self.filled_len < CAP {
            self.filled_len += 1;
        }
    }

    /// Pushes multiple values at once.
    pub fn push_slice(&mut self, slice: &[T]) {
        for item in slice {
            self.push(*item);
        }
    }

    /// Iterates through all values. Order of retrieval will likely NOT match order of input.
    pub fn iter(&self) -> Iter<T> {
        self.data[0..self.filled_len].iter()
    }

    /// Gaussian smoothing. Much slower than a simple average, will actually
    /// iterate through all values and return a weighted sum.
    pub fn gaussian_filter(&self) -> T {
        if CAP == 0 {
            return T::zero();
        }

        // Standard deviation for the Gaussian kernel
        let sigma = T::from_usize(CAP) / T::four();
        let mut weights = [T::zero(); CAP];

        // Calculate Gaussian weights
        let mut total_weight = T::zero();
        let center = T::from_usize(CAP - 1) / T::two();
        for i in 0..CAP {
            let distance = T::from_usize(i) - center;
            let weight = T::exp(-distance * distance / (T::two() * sigma * sigma));
            weights[i] = weight;
            total_weight += weight;
        }

        // Normalize weights
        for weight in weights.iter_mut() {
            *weight /= total_weight;
        }

        // Compute the weighted sum
        let mut sum = T::zero();
        self.data.iter()
            .zip(weights.iter())
            .for_each(|(value, weight)| sum += *value * *weight);
        sum
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    const MARGIN: f64 = 0.000001;

    #[test]
    fn create_and_push() {
        const CAP: usize = 10;
        let mut buf = SmoothBuffer::<CAP, f32>::new();
        for _ in 0..5 {
            buf.push(10.0);
        }

        assert_eq!(buf.capacity(), CAP);
        assert_eq!(buf.len(), 5);
        assert_eq!(buf.average(), 10.0);

        for _ in 0..10 {
            buf.push(5.0);
        }
        assert_eq!(buf.len(), CAP);
        assert_eq!(buf.average(), 5.0);
    }

    #[test]
    fn clearing() {
        let mut buf = SmoothBuffer::<10, f32>::new();
        for n in 0..buf.capacity() {
            buf.push(n as f32);
        }
        buf.clear();
        assert_eq!(buf.capacity(), 10);
        assert_eq!(buf.len(), 0);
        assert_eq!(buf.average(), 0.0);
        assert_eq!(buf.iter().next(), None);
    }

    #[test]
    fn iteration() {
        let mut buf = SmoothBuffer::<10, f64>::new();
        let len = 7;
        for n in 0..len {
            buf.push(n as f64);
        }

        for (i, value) in buf.iter().enumerate() {
            assert_eq!(i as f64, *value);
        }

        assert!(buf.iter().len() == len);
    }

    #[test]
    fn gaussian_smoothing_simple() {
        let mut buf = SmoothBuffer::<10, f64>::new();
        for _ in 0..100 {
            buf.push(3.0);
        }
        // Smoothed value won't be exactly the same! Will be correct to a few decimal places though
        // println!("{}", buf.gaussian_filter(0.5));
        assert!(buf.gaussian_filter() - 3.0 < MARGIN);
    }

    #[test]
    fn gaussian_smoothing_with_negative_values() {
        let mut buf = SmoothBuffer::<10, f64>::new();
        let mid = buf.len() / 2;
        for v in 0..buf.len() {
            buf.push(if v < mid {
                1.0
            } else if v > mid {
                -1.0
            } else {
                0.0
            });
        }
        // println!("{}", buf.gaussian_filter());
        assert!(buf.gaussian_filter().abs() < MARGIN);
    }

    #[test]
    fn gaussian_smoothing_slice() {
        let mut buf = SmoothBuffer::<10, f64>::new();
        buf.push_slice(&[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0]);
        assert!(buf.gaussian_filter() - 0.55 < MARGIN);
    }

    #[test]
    fn pre_filled_buffer() {
        fn test_value(x:f64){
            // println!("testing {}", x);
            let buf = SmoothBuffer::<10, f64>::pre_filled(x);
            assert!(buf.len() == 10);
            assert!(buf.gaussian_filter() - x < MARGIN);
            assert!(buf.average() - x < MARGIN);
        }

        for n in 0 ..= 10 {
            test_value(n as f64 / 10.0);
        }
    }

    #[test]
    fn progressive_fill() {
        let mut buf = SmoothBuffer::<10, f64>::pre_filled(0.0);
        // println!("{}", buf.gaussian_filter());
        assert!(buf.gaussian_filter() < MARGIN);
        for _n in 0..10 {
            buf.push(1.0);
            // println!("{:.2}", buf.gaussian_filter());
        }
        assert!(buf.gaussian_filter() - 1.0 < MARGIN);
    }
}