1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484
// Substrate-lite
// Copyright (C) 2019-2022 Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: GPL-3.0-or-later WITH Classpath-exception-2.0
// This program is free software: you can redistribute it and/or modify
// it under the terms of the GNU General Public License as published by
// the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
// This program is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//! Collection of "disjoint" blocks, in other words blocks whose existence is known but which
//! can't be verified yet.
//!
//! > **Example**: The local node knows about block 5. A peer announces block 7. Since the local
//! > node doesn't know block 6, it has to store block 7 for later, then download
//! > block 6. The container in this module is where block 7 is temporarily stored.
//!
//! Each block stored in this collection has the following properties associated to it:
//!
//! - A height.
//! - A hash.
//! - An optional parent block hash.
//! - Whether the block is known to be bad.
//! - A opaque user data decided by the user of type `TBl`.
//!
//! This data structure is only able to link parent and children together if the heights are
//! linearly increasing. For example, if block A is the parent of block B, then the height of
//! block B must be equal to the height of block A plus one. Otherwise, this data structure will
//! not be able to detect the parent-child relationship.
//!
//! If a block is marked as bad, all its children (i.e. other blocks in the collection whose
//! parent hash is the bad block) are automatically marked as bad as well. This process is
//! recursive, such that not only direct children but all descendants of a bad block are
//! automatically marked as bad.
//!
#![allow(dead_code)] // TODO: remove this after `all.rs` implements full node; right now many methods here are useless because expected to be used only for full node code
use alloc::collections::{btree_map::Entry, BTreeMap};
use core::{fmt, iter, mem};
/// Collection of pending blocks.
pub struct DisjointBlocks<TBl> {
/// All blocks in the collection. Keys are the block height and hash.
blocks: BTreeMap<(u64, [u8; 32]), Block<TBl>>,
}
#[derive(Debug, Copy, Clone, PartialEq, Eq)]
struct Block<TBl> {
parent_hash: Option<[u8; 32]>,
bad: bool,
user_data: TBl,
}
impl<TBl> DisjointBlocks<TBl> {
/// Initializes a new empty collection of blocks.
pub fn new() -> Self {
Self::with_capacity(0)
}
/// Initializes a new collection of blocks with the given capacity.
pub fn with_capacity(_capacity: usize) -> Self {
DisjointBlocks {
blocks: BTreeMap::default(),
}
}
/// Returns `true` if this data structure doesn't contain any block.
pub fn is_empty(&self) -> bool {
self.blocks.is_empty()
}
/// Returns the number of blocks stored in the data structure.
pub fn len(&self) -> usize {
self.blocks.len()
}
/// Returns the list of blocks in the collection.
pub fn iter(&'_ self) -> impl Iterator<Item = (u64, &[u8; 32], &'_ TBl)> + '_ {
self.blocks
.iter()
.map(|((he, ha), bl)| (*he, ha, &bl.user_data))
}
/// Returns `true` if the block with the given height and hash is in the collection.
pub fn contains(&self, height: u64, hash: &[u8; 32]) -> bool {
self.blocks.contains_key(&(height, *hash))
}
/// Inserts the block in the collection, passing a user data.
///
/// If a `parent_hash` is passed, and the parent is known to be bad, the newly-inserted block
/// is immediately marked as bad as well.
///
/// Returns the previous user data associated to this block, if any.
pub fn insert(
&mut self,
height: u64,
hash: [u8; 32],
parent_hash: Option<[u8; 32]>,
user_data: TBl,
) -> Option<TBl> {
let parent_is_bad = match (height.checked_sub(1), parent_hash) {
(Some(parent_height), Some(parent_hash)) => self
.blocks
.get(&(parent_height, parent_hash))
.map_or(false, |b| b.bad),
_ => false,
};
// Insertion is done "manually" in order to not override the value of `bad` if the block
// is already in the collection.
match self.blocks.entry((height, hash)) {
Entry::Occupied(entry) => {
let entry = entry.into_mut();
match (parent_hash, &mut entry.parent_hash) {
(Some(parent_hash), &mut Some(ph)) => debug_assert_eq!(ph, parent_hash),
(Some(parent_hash), ph @ &mut None) => *ph = Some(parent_hash),
(None, _) => {}
}
Some(mem::replace(&mut entry.user_data, user_data))
}
Entry::Vacant(entry) => {
entry.insert(Block {
parent_hash,
bad: parent_is_bad,
user_data,
});
None
}
}
}
/// Removes the block from the collection.
///
/// # Panic
///
/// Panics if the block with the given height and hash hasn't been inserted before.
///
#[track_caller]
pub fn remove(&mut self, height: u64, hash: &[u8; 32]) -> TBl {
self.blocks.remove(&(height, *hash)).unwrap().user_data
}
/// Removes from the collection the blocks whose height is strictly inferior to the given
/// value, and returns them.
pub fn remove_below_height(
&mut self,
threshold: u64,
) -> impl ExactSizeIterator<Item = (u64, [u8; 32], TBl)> {
let above_threshold = self.blocks.split_off(&(threshold, [0; 32]));
let below_threshold = mem::replace(&mut self.blocks, above_threshold);
below_threshold
.into_iter()
.map(|((he, ha), v)| (he, ha, v.user_data))
}
/// Returns the user data associated to the block. This is the value originally passed
/// through [`DisjointBlocks::insert`].
///
/// Returns `None` if the block hasn't been inserted before.
pub fn user_data(&self, height: u64, hash: &[u8; 32]) -> Option<&TBl> {
Some(&self.blocks.get(&(height, *hash))?.user_data)
}
/// Returns the user data associated to the block. This is the value originally passed
/// through [`DisjointBlocks::insert`].
///
/// Returns `None` if the block hasn't been inserted before.
pub fn user_data_mut(&mut self, height: u64, hash: &[u8; 32]) -> Option<&mut TBl> {
Some(&mut self.blocks.get_mut(&(height, *hash))?.user_data)
}
/// Returns the parent hash of the given block.
///
/// Returns `None` if either the block or its parent isn't known.
pub fn parent_hash(&self, height: u64, hash: &[u8; 32]) -> Option<&[u8; 32]> {
self.blocks
.get(&(height, *hash))
.and_then(|b| b.parent_hash.as_ref())
}
/// Returns the list of blocks whose height is `height + 1` and whose parent hash is the
/// given block.
pub fn children(
&'_ self,
height: u64,
hash: &[u8; 32],
) -> impl Iterator<Item = (u64, &[u8; 32], &'_ TBl)> + '_ {
let hash = *hash;
self.blocks
.range((height + 1, [0; 32])..=(height + 1, [0xff; 32]))
.filter(move |((_maybe_child_height, _), maybe_child)| {
debug_assert_eq!(*_maybe_child_height, height + 1);
maybe_child.parent_hash.as_ref() == Some(&hash)
})
.map(|((he, ha), bl)| (*he, ha, &bl.user_data))
}
/// Sets the parent hash of the given block.
///
/// If the parent is in the collection and known to be bad, the block is marked as bad as
/// well.
///
/// # Panic
///
/// Panics if the block with the given height and hash hasn't been inserted before.
/// Panics if the parent hash of that block was already known, and is different from the one
/// passed as parameter.
///
#[track_caller]
pub fn set_parent_hash(&mut self, height: u64, hash: &[u8; 32], parent_hash: [u8; 32]) {
let parent_is_bad = match height.checked_sub(1) {
Some(parent_height) => self
.blocks
.get(&(parent_height, parent_hash))
.map_or(false, |b| b.bad),
None => false,
};
let block = self.blocks.get_mut(&(height, *hash)).unwrap();
match &mut block.parent_hash {
&mut Some(ph) => assert_eq!(ph, parent_hash),
ph @ &mut None => *ph = Some(parent_hash),
}
if parent_is_bad {
self.set_block_bad(height, hash);
}
}
/// Marks the given block and all its known children as "bad".
///
/// If a child of this block is later added to the collection, it is also automatically
/// marked as bad.
///
/// # Panic
///
/// Panics if the block with the given height and hash hasn't been inserted before.
///
#[track_caller]
pub fn set_block_bad(&mut self, mut height: u64, hash: &[u8; 32]) {
// Initially contains the concerned block, then will contain the children of the concerned
// block, then the grand-children, then the grand-grand-children, and so on.
let mut blocks =
hashbrown::HashSet::with_capacity_and_hasher(1, fnv::FnvBuildHasher::default());
blocks.insert(*hash);
while !blocks.is_empty() {
let mut children = hashbrown::HashSet::with_capacity_and_hasher(
blocks.len() * 4,
fnv::FnvBuildHasher::default(),
);
// Iterate over all blocks whose height is `height + 1` to try find children.
for ((_maybe_child_height, maybe_child_hash), maybe_child) in self
.blocks
.range((height + 1, [0; 32])..=(height + 1, [0xff; 32]))
{
debug_assert_eq!(*_maybe_child_height, height + 1);
if maybe_child
.parent_hash
.as_ref()
.map_or(false, |p| blocks.contains(p))
{
children.insert(*maybe_child_hash);
}
}
for hash in blocks {
self.blocks.get_mut(&(height, hash)).unwrap().bad = true;
}
blocks = children;
height += 1;
}
}
/// Returns the list of blocks whose parent hash is known but the parent itself is absent from
/// the list of disjoint blocks. These blocks can potentially be verified.
pub fn good_tree_roots(&'_ self) -> impl Iterator<Item = TreeRoot> + '_ {
self.blocks
.iter()
.filter(|(_, block)| !block.bad)
.filter_map(move |((height, hash), block)| {
let parent_hash = block.parent_hash.as_ref()?;
// Return `None` if parent is in the list of blocks.
if self.blocks.contains_key(&(*height - 1, *parent_hash)) {
return None;
}
Some(TreeRoot {
block_hash: *hash,
block_number: *height,
parent_block_hash: *parent_hash,
})
})
}
/// Returns an iterator yielding blocks that are known to exist but which either haven't been
/// inserted, or whose parent hash isn't known.
///
/// More precisely, the iterator returns:
///
/// - Blocks that have been inserted in this data structure but whose parent hash is unknown.
/// - Parents of blocks that have been inserted in this data structure and whose parent hash
/// is known and whose parent is missing from the data structure.
///
/// > **Note**: Blocks in the second category might include blocks that are already known by
/// > the user of this data structure. To avoid this, you are encouraged to remove
/// > from the [`DisjointBlocks`] any block that can be verified prior to calling
/// > this method.
///
/// The blocks yielded by the iterator are always ordered by ascending height.
pub fn unknown_blocks(&'_ self) -> impl Iterator<Item = (u64, &'_ [u8; 32])> + '_ {
// Blocks whose parent hash isn't known.
let mut iter1 = self
.blocks
.iter()
.filter(|(_, s)| !s.bad)
.filter(|(_, s)| s.parent_hash.is_none())
.map(|((n, h), _)| (*n, h))
.peekable();
// Blocks whose hash is referenced as the parent of a block, but are missing from the
// collection.
let mut iter2 = self
.blocks
.iter()
.filter(|(_, s)| !s.bad)
.filter_map(|((n, _), s)| s.parent_hash.as_ref().map(|h| (n - 1, h)))
.filter(move |(n, h)| !self.blocks.contains_key(&(*n, **h)))
.peekable();
// A custom combinator is used in order to order elements between `iter1` and `iter2`
// by ascending block height.
iter::from_fn(move || match (iter1.peek(), iter2.peek()) {
(Some((b1, _)), Some((b2, _))) if b1 > b2 => iter2.next(),
(Some(_), Some(_)) => iter1.next(),
(Some(_), None) => iter1.next(),
(None, Some(_)) => iter2.next(),
(None, None) => None,
})
}
/// Returns whether a block is marked as bad.
///
/// Returns `None` if the block isn't known.
pub fn is_bad(&self, height: u64, hash: &[u8; 32]) -> Option<bool> {
Some(self.blocks.get(&(height, *hash))?.bad)
}
/// Returns whether the parent of a block is bad.
///
/// Returns `None` if either the block or its parent isn't known.
pub fn is_parent_bad(&self, height: u64, hash: &[u8; 32]) -> Option<bool> {
let parent_hash = self.blocks.get(&(height, *hash))?.parent_hash?;
let parent_height = match height.checked_sub(1) {
Some(h) => h,
None => return Some(false), // Parent is known and isn't present in the data structure.
};
Some(
self.blocks
.get(&(parent_height, parent_hash))
.map_or(false, |parent| parent.bad),
)
}
}
impl<TBl: fmt::Debug> fmt::Debug for DisjointBlocks<TBl> {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
fmt::Debug::fmt(&self.blocks, f)
}
}
/// See [`DisjointBlocks::good_tree_roots`].
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash)]
pub struct TreeRoot {
/// Hash of the block that is a tree root.
pub block_hash: [u8; 32],
/// Height of the block that is a tree root.
pub block_number: u64,
/// Hash of the parent of the block.
pub parent_block_hash: [u8; 32],
}
#[cfg(test)]
mod tests {
#[test]
fn insert_doesnt_override_bad() {
// Calling `insert` with a block that already exists doesn't reset its "bad" state.
let mut collection = super::DisjointBlocks::new();
assert!(collection.insert(1, [1; 32], Some([0; 32]), ()).is_none());
assert_eq!(collection.unknown_blocks().count(), 1);
collection.set_block_bad(1, &[1; 32]);
assert_eq!(collection.unknown_blocks().count(), 0);
assert!(collection.insert(1, [1; 32], Some([0; 32]), ()).is_some());
assert_eq!(collection.unknown_blocks().count(), 0);
}
#[test]
fn insert_doesnt_override_parent() {
// Calling `insert` with a block that already exists doesn't reset its parent.
let mut collection = super::DisjointBlocks::new();
assert!(collection.insert(1, [1; 32], Some([0; 32]), ()).is_none());
assert_eq!(
collection.unknown_blocks().collect::<Vec<_>>(),
vec![(0, &[0; 32])]
);
assert!(collection.insert(1, [1; 32], None, ()).is_some());
assert_eq!(
collection.unknown_blocks().collect::<Vec<_>>(),
vec![(0, &[0; 32])]
);
}
#[test]
fn set_parent_hash_updates_bad() {
// Calling `set_parent_hash` where the parent is a known a bad block marks the block and
// its children as bad as well.
let mut collection = super::DisjointBlocks::new();
collection.insert(1, [1; 32], Some([0; 32]), ());
assert_eq!(collection.unknown_blocks().count(), 1);
collection.set_block_bad(1, &[1; 32]);
assert_eq!(collection.unknown_blocks().count(), 0);
collection.insert(2, [2; 32], None, ());
assert!(!collection.is_bad(2, &[2; 32]).unwrap());
collection.insert(3, [3; 32], Some([2; 32]), ());
assert!(!collection.is_bad(3, &[3; 32]).unwrap());
collection.insert(3, [31; 32], Some([2; 32]), ());
assert!(!collection.is_bad(3, &[31; 32]).unwrap());
collection.insert(4, [4; 32], Some([3; 32]), ());
assert!(!collection.is_bad(4, &[4; 32]).unwrap());
assert_eq!(collection.unknown_blocks().count(), 1);
collection.set_parent_hash(2, &[2; 32], [1; 32]);
assert_eq!(collection.unknown_blocks().count(), 0);
assert!(collection.is_bad(2, &[2; 32]).unwrap());
assert!(collection.is_bad(3, &[3; 32]).unwrap());
assert!(collection.is_bad(3, &[31; 32]).unwrap());
assert!(collection.is_bad(4, &[4; 32]).unwrap());
}
#[test]
fn insert_updates_bad() {
// Calling `insert` where the parent is a known a bad block marks the block as
// bad as well.
let mut collection = super::DisjointBlocks::new();
collection.insert(1, [1; 32], Some([0; 32]), ());
collection.set_block_bad(1, &[1; 32]);
assert_eq!(collection.unknown_blocks().count(), 0);
collection.insert(2, [2; 32], Some([1; 32]), ());
assert_eq!(collection.unknown_blocks().count(), 0);
// Control sample.
collection.insert(1, [0x80; 32], Some([0; 32]), ());
assert_eq!(collection.unknown_blocks().count(), 1);
}
}