1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
//! Macros for using `smol-rs`.
//!
//! One of the advantages of [`smol`] is that it lets you set up your own executor, optimized for
//! your own use cases. However, quick scaffolding is important for many organizational use cases.
//! Especially when sane defaults are appreciated, setting up your own executor is a waste of
//! time.
//!
//! This crate provides macros for setting up an efficient [`smol`] runtime quickly and
//! effectively. It provides sane defaults that are useful for most applications.
//!
//! ## Simple Executor
//!
//! Just have an `async` main function, using the [`main`] macro.
//!
//!
//! ```
//! use smol_macros::main;
//!
//! main! {
//!     async fn main() {
//!         println!("Hello, world!");
//!     }
//! }
//! ```
//!
//! This crate uses declarative macros rather than procedural macros, in order to avoid needing
//! to use heavy macro dependencies. If you want to use the proc macro syntax, you can use the
//! [`macro_rules_attribute::apply`] function to emulate it.
//!
//! The following is equivalent to the previous example.
//!
//! ```
//! use macro_rules_attribute::apply;
//! use smol_macros::main;
//!
//! #[apply(main!)]
//! async fn main() {
//!     println!("Hello, world!");
//! }
//! ```
//!
//! ## Task-Based Executor
//!
//! This crate re-exports [`smol::Executor`]. If that is used as the first parameter in a
//! function in [`main`], it will automatically create the executor.
//!
//! ```
//! use macro_rules_attribute::apply;
//! use smol_macros::{main, Executor};
//!
//! #[apply(main!)]
//! async fn main(ex: &Executor<'_>) {
//!     ex.spawn(async { println!("Hello world!"); }).await;
//! }
//! ```
//!
//! If the thread-safe [`smol::Executor`] is used here, a thread pool will be spawned to run
//! the executor on multiple threads. For the thread-unsafe [`smol::LocalExecutor`], no threads
//! will be spawned.
//!
//! See documentation for the [`main`] function for more details.
//!
//! ## Tests
//!
//! Use the [`test`] macro to set up test cases that run self-contained executors.
//!
//! ```
//! use macro_rules_attribute::apply;
//! use smol_macros::{test, Executor};
//!
//! #[apply(test!)]
//! async fn do_test(ex: &Executor<'_>) {
//!     ex.spawn(async {
//!         assert_eq!(1 + 1, 2);
//!     }).await;
//! }
//! ```
//!
//! [`smol`]: https://crates.io/crates/smol
//! [`smol::Executor`]: https://docs.rs/smol/latest/smol/struct.Executor.html
//! [`smol::LocalExecutor`]: https://docs.rs/smol/latest/smol/struct.LocalExecutor.html
//! [`macro_rules_attribute::apply`]: https://docs.rs/macro_rules_attribute/latest/macro_rules_attribute/attr.apply.html

#![forbid(unsafe_code)]

#[doc(no_inline)]
pub use async_executor::{Executor, LocalExecutor};

/// Turn a main function into one that runs inside of a self-contained executor.
///
/// The function created by this macro spawns an executor, spawns threads to run that executor
/// on (if applicable), and then blocks the current thread on the future.
///
/// ## Examples
///
/// Like [`tokio::main`], this function is not limited to wrapping the program's entry point.
/// In a mostly synchronous program, it can wrap a self-contained `async` function in its
/// own executor.
///
/// ```
/// use macro_rules_attribute::apply;
/// use smol_macros::{main, Executor};
///
/// fn do_something_sync() -> u32 {
///     1 + 1
/// }
///
/// #[apply(main!)]
/// async fn do_something_async(ex: &Executor<'_>) -> u32 {
///     ex.spawn(async { 1 + 1 }).await
/// }
///
/// fn main() {
///     let x = do_something_sync();
///     let y = do_something_async();
///     assert_eq!(x + y, 4);
/// }
/// ```
///
/// The first parameter to the `main` function can be an executor. It can be one of the following:
///
/// - Nothing.
/// - `&`[`Executor`]
/// - `&`[`LocalExecutor`]
/// - `Arc<`[`Executor`]`>`
/// - `Rc<`[`LocalExecutor`]`>`
///
/// [`tokio::main`]: https://docs.rs/tokio/latest/tokio/attr.main.html
/// [`Executor`]: https://docs.rs/smol/latest/smol/struct.Executor.html
/// [`LocalExecutor`]: https://docs.rs/smol/latest/smol/struct.LocalExecutor.html
#[macro_export]
macro_rules! main {
    (
        $(#[$attr:meta])*
        async fn $name:ident () $(-> $ret:ty)? $bl:block
    ) => {
        $(#[$attr])*
        fn $name () $(-> $ret)? {
            $crate::__private::block_on(async {
                $bl
            })
        }
    };

    (
        $(#[$post_attr:meta])*
        async fn $name:ident ($ex:ident : & $exty:ty)
        $(-> $ret:ty)? $bl:block
    ) => {
        $(#[$post_attr])*
        fn $name () $(-> $ret)? {
            <$exty as $crate::__private::MainExecutor>::with_main(|ex| {
                $crate::__private::block_on(ex.run(async move {
                    let $ex = ex;
                    $bl
                }))
            })
        }
    };

    (
        $(#[$post_attr:meta])*
        async fn $name:ident ($ex:ident : $exty:ty)
        $(-> $ret:ty)? $bl:block
    ) => {
        $crate::main! {
            $(#[$post_attr])*
            async fn $name(ex: &$exty) $(-> $ret)? {
                let $ex = ex.clone();
                $bl
            }
        }
    }
}

/// Wrap a test in an asynchronous executor.
///
/// This is equivalent to the [`main`] macro, but adds the `#[test]` attribute.
///
/// ## Examples
///
/// ```
/// use macro_rules_attribute::apply;
/// use smol_macros::test;
///
/// #[apply(test!)]
/// async fn do_test() {
///     assert_eq!(1 + 1, 2);
/// }
/// ```
#[macro_export]
macro_rules! test {
    // Special case to get around bug in macro engine.
    (
        $(#[$post_attr:meta])*
        async fn $name:ident ($exname:ident : & $exty:ty)
        $(-> $ret:ty)? $bl:block
    ) => {
        $crate::main! {
            $(#[$post_attr])*
            #[core::prelude::v1::test]
            async fn $name($exname: &$exty) $(-> $ret)? $bl
        }
    };

    (
        $(#[$post_attr:meta])*
        async fn $name:ident ($($pname:ident : $pty:ty),* $(,)?)
        $(-> $ret:ty)? $bl:block
    ) => {
        $crate::main! {
            $(#[$post_attr])*
            #[core::prelude::v1::test]
            async fn $name($($pname: $pty),*) $(-> $ret)? $bl
        }
    };
}

#[doc(hidden)]
pub mod __private {
    pub use async_io::block_on;
    pub use std::rc::Rc;

    use crate::{Executor, LocalExecutor};
    use event_listener::Event;
    use std::sync::atomic::{AtomicBool, Ordering};
    use std::sync::Arc;
    use std::thread;

    /// Something that can be set up as an executor.
    #[doc(hidden)]
    pub trait MainExecutor: Sized {
        /// Create this type and pass it into `main`.
        fn with_main<T, F: FnOnce(&Self) -> T>(f: F) -> T;
    }

    impl MainExecutor for Arc<Executor<'_>> {
        #[inline]
        fn with_main<T, F: FnOnce(&Self) -> T>(f: F) -> T {
            let ex = Arc::new(Executor::new());
            with_thread_pool(&ex, || f(&ex))
        }
    }

    impl MainExecutor for Executor<'_> {
        #[inline]
        fn with_main<T, F: FnOnce(&Self) -> T>(f: F) -> T {
            let ex = Executor::new();
            with_thread_pool(&ex, || f(&ex))
        }
    }

    impl MainExecutor for Rc<LocalExecutor<'_>> {
        #[inline]
        fn with_main<T, F: FnOnce(&Self) -> T>(f: F) -> T {
            f(&Rc::new(LocalExecutor::new()))
        }
    }

    impl MainExecutor for LocalExecutor<'_> {
        fn with_main<T, F: FnOnce(&Self) -> T>(f: F) -> T {
            f(&LocalExecutor::new())
        }
    }

    /// Run a function that takes an `Executor` inside of a thread pool.
    #[inline]
    fn with_thread_pool<T>(ex: &Executor<'_>, f: impl FnOnce() -> T) -> T {
        let stopper = WaitForStop::new();

        // Create a thread for each CPU.
        thread::scope(|scope| {
            let num_threads = thread::available_parallelism().map_or(1, |num| num.get());
            for i in 0..num_threads {
                let ex = &ex;
                let stopper = &stopper;

                thread::Builder::new()
                    .name(format!("smol-macros-{i}"))
                    .spawn_scoped(scope, || {
                        block_on(ex.run(stopper.wait()));
                    })
                    .expect("failed to spawn thread");
            }

            let result = std::panic::catch_unwind(std::panic::AssertUnwindSafe(f));

            stopper.stop();

            match result {
                Ok(value) => value,
                Err(err) => std::panic::resume_unwind(err),
            }
        })
    }

    /// Wait for the executor to stop.
    struct WaitForStop {
        /// Whether or not we need to stop.
        stopped: AtomicBool,

        /// Wait for the stop.
        events: Event,
    }

    impl WaitForStop {
        /// Create a new wait for stop.
        #[inline]
        fn new() -> Self {
            Self {
                stopped: AtomicBool::new(false),
                events: Event::new(),
            }
        }

        /// Wait for the event to stop.
        #[inline]
        async fn wait(&self) {
            loop {
                if self.stopped.load(Ordering::Relaxed) {
                    return;
                }

                event_listener::listener!(&self.events => listener);

                if self.stopped.load(Ordering::Acquire) {
                    return;
                }

                listener.await;
            }
        }

        /// Stop the waiter.
        #[inline]
        fn stop(&self) {
            self.stopped.store(true, Ordering::SeqCst);
            self.events.notify_additional(std::usize::MAX);
        }
    }
}