1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
//! # Support Vector Machines
//!
//! Support Vector Machines (SVM) is one of the most performant off-the-shelf machine learning algorithms.
//! SVM is based on the [Vapnik–Chervonenkiy theory](https://en.wikipedia.org/wiki/Vapnik%E2%80%93Chervonenkis_theory) that was developed during 1960–1990 by Vladimir Vapnik and Alexey Chervonenkiy.
//!
//! SVM splits data into two sets using a maximal-margin decision boundary, \\(f(x)\\). For regression, the algorithm uses a value of the function \\(f(x)\\) to predict a target value.
//! To classify a new point, algorithm calculates a sign of the decision function to see where the new point is relative to the boundary.
//!
//! SVM is memory efficient since it uses only a subset of training data to find a decision boundary. This subset is called support vectors.
//!
//! In SVM distance between a data point and the support vectors is defined by the kernel function.
//! `smartcore` supports multiple kernel functions but you can always define a new kernel function by implementing the `Kernel` trait. Not all functions can be a kernel.
//! Building a new kernel requires a good mathematical understanding of the [Mercer theorem](https://en.wikipedia.org/wiki/Mercer%27s_theorem)
//! that gives necessary and sufficient condition for a function to be a kernel function.
//!
//! Pre-defined kernel functions:
//!
//! * *Linear*, \\( K(x, x') = \langle x, x' \rangle\\)
//! * *Polynomial*, \\( K(x, x') = (\gamma\langle x, x' \rangle + r)^d\\), where \\(d\\) is polynomial degree, \\(\gamma\\) is a kernel coefficient and \\(r\\) is an independent term in the kernel function.
//! * *RBF (Gaussian)*, \\( K(x, x') = e^{-\gamma \lVert x - x' \rVert ^2} \\), where \\(\gamma\\) is kernel coefficient
//! * *Sigmoid (hyperbolic tangent)*, \\( K(x, x') = \tanh ( \gamma \langle x, x' \rangle + r ) \\), where \\(\gamma\\) is kernel coefficient and \\(r\\) is an independent term in the kernel function.
//!
//! <script src="https://polyfill.io/v3/polyfill.min.js?features=es6"></script>
//! <script id="MathJax-script" async src="https://cdn.jsdelivr.net/npm/mathjax@3/es5/tex-mml-chtml.js"></script>
/// search parameters
pub mod svc;
pub mod svr;
// /// search parameters space
// pub mod search;

use core::fmt::Debug;

#[cfg(feature = "serde")]
use serde::{Deserialize, Serialize};

use crate::error::{Failed, FailedError};
use crate::linalg::basic::arrays::{Array1, ArrayView1};

/// Defines a kernel function.
/// This is a object-safe trait.
#[cfg_attr(
    all(feature = "serde", not(target_arch = "wasm32")),
    typetag::serde(tag = "type")
)]
pub trait Kernel: Debug {
    #[allow(clippy::ptr_arg)]
    /// Apply kernel function to x_i and x_j
    fn apply(&self, x_i: &Vec<f64>, x_j: &Vec<f64>) -> Result<f64, Failed>;
}

/// Pre-defined kernel functions
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[derive(Debug, Clone)]
pub struct Kernels;

impl Kernels {
    /// Return a default linear
    pub fn linear() -> LinearKernel {
        LinearKernel::default()
    }
    /// Return a default RBF
    pub fn rbf() -> RBFKernel {
        RBFKernel::default()
    }
    /// Return a default polynomial
    pub fn polynomial() -> PolynomialKernel {
        PolynomialKernel::default()
    }
    /// Return a default sigmoid
    pub fn sigmoid() -> SigmoidKernel {
        SigmoidKernel::default()
    }
}

/// Linear Kernel
#[allow(clippy::derive_partial_eq_without_eq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[derive(Debug, Clone, PartialEq, Eq, Default)]
pub struct LinearKernel;

/// Radial basis function (Gaussian) kernel
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[derive(Debug, Default, Clone, PartialEq)]
pub struct RBFKernel {
    /// kernel coefficient
    pub gamma: Option<f64>,
}

#[allow(dead_code)]
impl RBFKernel {
    /// assign gamma parameter to kernel (required)
    /// ```rust
    /// use smartcore::svm::RBFKernel;
    /// let knl = RBFKernel::default().with_gamma(0.7);
    /// ```
    pub fn with_gamma(mut self, gamma: f64) -> Self {
        self.gamma = Some(gamma);
        self
    }
}

/// Polynomial kernel
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[derive(Debug, Clone, PartialEq)]
pub struct PolynomialKernel {
    /// degree of the polynomial
    pub degree: Option<f64>,
    /// kernel coefficient
    pub gamma: Option<f64>,
    /// independent term in kernel function
    pub coef0: Option<f64>,
}

impl Default for PolynomialKernel {
    fn default() -> Self {
        Self {
            gamma: Option::None,
            degree: Option::None,
            coef0: Some(1f64),
        }
    }
}

impl PolynomialKernel {
    /// set parameters for kernel
    /// ```rust
    /// use smartcore::svm::PolynomialKernel;
    /// let knl = PolynomialKernel::default().with_params(3.0, 0.7, 1.0);
    /// ```
    pub fn with_params(mut self, degree: f64, gamma: f64, coef0: f64) -> Self {
        self.degree = Some(degree);
        self.gamma = Some(gamma);
        self.coef0 = Some(coef0);
        self
    }
    /// set gamma parameter for kernel
    /// ```rust
    /// use smartcore::svm::PolynomialKernel;
    /// let knl = PolynomialKernel::default().with_gamma(0.7);
    /// ```
    pub fn with_gamma(mut self, gamma: f64) -> Self {
        self.gamma = Some(gamma);
        self
    }
    /// set degree parameter for kernel
    /// ```rust
    /// use smartcore::svm::PolynomialKernel;
    /// let knl = PolynomialKernel::default().with_degree(3.0, 100);
    /// ```
    pub fn with_degree(self, degree: f64, n_features: usize) -> Self {
        self.with_params(degree, 1f64, 1f64 / n_features as f64)
    }
}

/// Sigmoid (hyperbolic tangent) kernel
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
#[derive(Debug, Clone, PartialEq)]
pub struct SigmoidKernel {
    /// kernel coefficient
    pub gamma: Option<f64>,
    /// independent term in kernel function
    pub coef0: Option<f64>,
}

impl Default for SigmoidKernel {
    fn default() -> Self {
        Self {
            gamma: Option::None,
            coef0: Some(1f64),
        }
    }
}

impl SigmoidKernel {
    /// set parameters for kernel
    /// ```rust
    /// use smartcore::svm::SigmoidKernel;
    /// let knl = SigmoidKernel::default().with_params(0.7, 1.0);
    /// ```
    pub fn with_params(mut self, gamma: f64, coef0: f64) -> Self {
        self.gamma = Some(gamma);
        self.coef0 = Some(coef0);
        self
    }
    /// set gamma parameter for kernel
    /// ```rust
    /// use smartcore::svm::SigmoidKernel;
    /// let knl = SigmoidKernel::default().with_gamma(0.7);
    /// ```
    pub fn with_gamma(mut self, gamma: f64) -> Self {
        self.gamma = Some(gamma);
        self
    }
}

#[cfg_attr(all(feature = "serde", not(target_arch = "wasm32")), typetag::serde)]
impl Kernel for LinearKernel {
    fn apply(&self, x_i: &Vec<f64>, x_j: &Vec<f64>) -> Result<f64, Failed> {
        Ok(x_i.dot(x_j))
    }
}

#[cfg_attr(all(feature = "serde", not(target_arch = "wasm32")), typetag::serde)]
impl Kernel for RBFKernel {
    fn apply(&self, x_i: &Vec<f64>, x_j: &Vec<f64>) -> Result<f64, Failed> {
        if self.gamma.is_none() {
            return Err(Failed::because(
                FailedError::ParametersError,
                "gamma should be set, use {Kernel}::default().with_gamma(..)",
            ));
        }
        let v_diff = x_i.sub(x_j);
        Ok((-self.gamma.unwrap() * v_diff.mul(&v_diff).sum()).exp())
    }
}

#[cfg_attr(all(feature = "serde", not(target_arch = "wasm32")), typetag::serde)]
impl Kernel for PolynomialKernel {
    fn apply(&self, x_i: &Vec<f64>, x_j: &Vec<f64>) -> Result<f64, Failed> {
        if self.gamma.is_none() || self.coef0.is_none() || self.degree.is_none() {
            return Err(Failed::because(
                FailedError::ParametersError, "gamma, coef0, degree should be set, 
                                                        use {Kernel}::default().with_{parameter}(..)")
            );
        }
        let dot = x_i.dot(x_j);
        Ok((self.gamma.unwrap() * dot + self.coef0.unwrap()).powf(self.degree.unwrap()))
    }
}

#[cfg_attr(all(feature = "serde", not(target_arch = "wasm32")), typetag::serde)]
impl Kernel for SigmoidKernel {
    fn apply(&self, x_i: &Vec<f64>, x_j: &Vec<f64>) -> Result<f64, Failed> {
        if self.gamma.is_none() || self.coef0.is_none() {
            return Err(Failed::because(
                FailedError::ParametersError, "gamma, coef0, degree should be set, 
                                                        use {Kernel}::default().with_{parameter}(..)")
            );
        }
        let dot = x_i.dot(x_j);
        Ok(self.gamma.unwrap() * dot + self.coef0.unwrap().tanh())
    }
}

#[cfg(test)]
mod tests {
    use super::*;
    use crate::svm::Kernels;

    #[cfg_attr(
        all(target_arch = "wasm32", not(target_os = "wasi")),
        wasm_bindgen_test::wasm_bindgen_test
    )]
    #[test]
    fn linear_kernel() {
        let v1 = vec![1., 2., 3.];
        let v2 = vec![4., 5., 6.];

        assert_eq!(32f64, Kernels::linear().apply(&v1, &v2).unwrap());
    }

    #[cfg_attr(
        all(target_arch = "wasm32", not(target_os = "wasi")),
        wasm_bindgen_test::wasm_bindgen_test
    )]
    #[test]
    fn rbf_kernel() {
        let v1 = vec![1., 2., 3.];
        let v2 = vec![4., 5., 6.];

        let result = Kernels::rbf()
            .with_gamma(0.055)
            .apply(&v1, &v2)
            .unwrap()
            .abs();

        assert!((0.2265f64 - result) < 1e-4);
    }

    #[cfg_attr(
        all(target_arch = "wasm32", not(target_os = "wasi")),
        wasm_bindgen_test::wasm_bindgen_test
    )]
    #[test]
    fn polynomial_kernel() {
        let v1 = vec![1., 2., 3.];
        let v2 = vec![4., 5., 6.];

        let result = Kernels::polynomial()
            .with_params(3.0, 0.5, 1.0)
            .apply(&v1, &v2)
            .unwrap()
            .abs();

        assert!((4913f64 - result) < std::f64::EPSILON);
    }

    #[cfg_attr(
        all(target_arch = "wasm32", not(target_os = "wasi")),
        wasm_bindgen_test::wasm_bindgen_test
    )]
    #[test]
    fn sigmoid_kernel() {
        let v1 = vec![1., 2., 3.];
        let v2 = vec![4., 5., 6.];

        let result = Kernels::sigmoid()
            .with_params(0.01, 0.1)
            .apply(&v1, &v2)
            .unwrap()
            .abs();

        assert!((0.3969f64 - result) < 1e-4);
    }
}