# Struct smallvectune::SmallVec[−][src]

`pub struct SmallVec<A: Array>(_);`

Our wrapped SmalLVec type

## Methods from Deref<Target = [A::Item]>

#### `pub const fn len(&self) -> usize`1.0.0[src]

Returns the number of elements in the slice.

# Examples

```let a = [1, 2, 3];
assert_eq!(a.len(), 3);```

#### `pub const fn is_empty(&self) -> bool`1.0.0[src]

Returns `true` if the slice has a length of 0.

# Examples

```let a = [1, 2, 3];
assert!(!a.is_empty());```

#### `pub fn first(&self) -> Option<&T>`1.0.0[src]

Returns the first element of the slice, or `None` if it is empty.

# Examples

```let v = [10, 40, 30];
assert_eq!(Some(&10), v.first());

let w: &[i32] = &[];
assert_eq!(None, w.first());```

#### `pub fn first_mut(&mut self) -> Option<&mut T>`1.0.0[src]

Returns a mutable pointer to the first element of the slice, or `None` if it is empty.

# Examples

```let x = &mut [0, 1, 2];

if let Some(first) = x.first_mut() {
*first = 5;
}
assert_eq!(x, &[5, 1, 2]);```

#### `pub fn split_first(&self) -> Option<(&T, &[T])>`1.5.0[src]

Returns the first and all the rest of the elements of the slice, or `None` if it is empty.

# Examples

```let x = &[0, 1, 2];

if let Some((first, elements)) = x.split_first() {
assert_eq!(first, &0);
assert_eq!(elements, &[1, 2]);
}```

#### `pub fn split_first_mut(&mut self) -> Option<(&mut T, &mut [T])>`1.5.0[src]

Returns the first and all the rest of the elements of the slice, or `None` if it is empty.

# Examples

```let x = &mut [0, 1, 2];

if let Some((first, elements)) = x.split_first_mut() {
*first = 3;
elements[0] = 4;
elements[1] = 5;
}
assert_eq!(x, &[3, 4, 5]);```

#### `pub fn split_last(&self) -> Option<(&T, &[T])>`1.5.0[src]

Returns the last and all the rest of the elements of the slice, or `None` if it is empty.

# Examples

```let x = &[0, 1, 2];

if let Some((last, elements)) = x.split_last() {
assert_eq!(last, &2);
assert_eq!(elements, &[0, 1]);
}```

#### `pub fn split_last_mut(&mut self) -> Option<(&mut T, &mut [T])>`1.5.0[src]

Returns the last and all the rest of the elements of the slice, or `None` if it is empty.

# Examples

```let x = &mut [0, 1, 2];

if let Some((last, elements)) = x.split_last_mut() {
*last = 3;
elements[0] = 4;
elements[1] = 5;
}
assert_eq!(x, &[4, 5, 3]);```

#### `pub fn last(&self) -> Option<&T>`1.0.0[src]

Returns the last element of the slice, or `None` if it is empty.

# Examples

```let v = [10, 40, 30];
assert_eq!(Some(&30), v.last());

let w: &[i32] = &[];
assert_eq!(None, w.last());```

#### `pub fn last_mut(&mut self) -> Option<&mut T>`1.0.0[src]

Returns a mutable pointer to the last item in the slice.

# Examples

```let x = &mut [0, 1, 2];

if let Some(last) = x.last_mut() {
*last = 10;
}
assert_eq!(x, &[0, 1, 10]);```

#### `pub fn get<I>(&self, index: I) -> Option<&<I as SliceIndex<[T]>>::Output> where    I: SliceIndex<[T]>, `1.0.0[src]

Returns a reference to an element or subslice depending on the type of index.

• If given a position, returns a reference to the element at that position or `None` if out of bounds.
• If given a range, returns the subslice corresponding to that range, or `None` if out of bounds.

# Examples

```let v = [10, 40, 30];
assert_eq!(Some(&40), v.get(1));
assert_eq!(Some(&[10, 40][..]), v.get(0..2));
assert_eq!(None, v.get(3));
assert_eq!(None, v.get(0..4));```

#### `pub fn get_mut<I>(    &mut self,     index: I) -> Option<&mut <I as SliceIndex<[T]>>::Output> where    I: SliceIndex<[T]>, `1.0.0[src]

Returns a mutable reference to an element or subslice depending on the type of index (see `get`) or `None` if the index is out of bounds.

# Examples

```let x = &mut [0, 1, 2];

if let Some(elem) = x.get_mut(1) {
*elem = 42;
}
assert_eq!(x, &[0, 42, 2]);```

#### `pub unsafe fn get_unchecked<I>(    &self,     index: I) -> &<I as SliceIndex<[T]>>::Output where    I: SliceIndex<[T]>, `1.0.0[src]

Returns a reference to an element or subslice, without doing bounds checking.

This is generally not recommended, use with caution! For a safe alternative see `get`.

# Examples

```let x = &[1, 2, 4];

unsafe {
assert_eq!(x.get_unchecked(1), &2);
}```

#### `pub unsafe fn get_unchecked_mut<I>(    &mut self,     index: I) -> &mut <I as SliceIndex<[T]>>::Output where    I: SliceIndex<[T]>, `1.0.0[src]

Returns a mutable reference to an element or subslice, without doing bounds checking.

This is generally not recommended, use with caution! For a safe alternative see `get_mut`.

# Examples

```let x = &mut [1, 2, 4];

unsafe {
let elem = x.get_unchecked_mut(1);
*elem = 13;
}
assert_eq!(x, &[1, 13, 4]);```

#### `pub const fn as_ptr(&self) -> *const T`1.0.0[src]

Returns a raw pointer to the slice's buffer.

The caller must ensure that the slice outlives the pointer this function returns, or else it will end up pointing to garbage.

Modifying the container referenced by this slice may cause its buffer to be reallocated, which would also make any pointers to it invalid.

# Examples

```let x = &[1, 2, 4];
let x_ptr = x.as_ptr();

unsafe {
for i in 0..x.len() {
assert_eq!(x.get_unchecked(i), &*x_ptr.offset(i as isize));
}
}```

#### `pub fn as_mut_ptr(&mut self) -> *mut T`1.0.0[src]

Returns an unsafe mutable pointer to the slice's buffer.

The caller must ensure that the slice outlives the pointer this function returns, or else it will end up pointing to garbage.

Modifying the container referenced by this slice may cause its buffer to be reallocated, which would also make any pointers to it invalid.

# Examples

```let x = &mut [1, 2, 4];
let x_ptr = x.as_mut_ptr();

unsafe {
for i in 0..x.len() {
*x_ptr.offset(i as isize) += 2;
}
}
assert_eq!(x, &[3, 4, 6]);```

#### `pub fn swap(&mut self, a: usize, b: usize)`1.0.0[src]

Swaps two elements in the slice.

# Arguments

• a - The index of the first element
• b - The index of the second element

# Panics

Panics if `a` or `b` are out of bounds.

# Examples

```let mut v = ["a", "b", "c", "d"];
v.swap(1, 3);
assert!(v == ["a", "d", "c", "b"]);```

#### `pub fn reverse(&mut self)`1.0.0[src]

Reverses the order of elements in the slice, in place.

# Examples

```let mut v = [1, 2, 3];
v.reverse();
assert!(v == [3, 2, 1]);```

#### ⓘImportant traits for Iter<'a, T>### Important traits for Iter<'a, T> `impl<'a, T> Iterator for Iter<'a, T> type Item = &'a T;``pub fn iter(&self) -> Iter<T>`1.0.0[src]

Returns an iterator over the slice.

# Examples

```let x = &[1, 2, 4];
let mut iterator = x.iter();

assert_eq!(iterator.next(), Some(&1));
assert_eq!(iterator.next(), Some(&2));
assert_eq!(iterator.next(), Some(&4));
assert_eq!(iterator.next(), None);```

#### ⓘImportant traits for IterMut<'a, T>### Important traits for IterMut<'a, T> `impl<'a, T> Iterator for IterMut<'a, T> type Item = &'a mut T;``pub fn iter_mut(&mut self) -> IterMut<T>`1.0.0[src]

Returns an iterator that allows modifying each value.

# Examples

```let x = &mut [1, 2, 4];
for elem in x.iter_mut() {
*elem += 2;
}
assert_eq!(x, &[3, 4, 6]);```

#### ⓘImportant traits for Windows<'a, T>### Important traits for Windows<'a, T> `impl<'a, T> Iterator for Windows<'a, T> type Item = &'a [T];``pub fn windows(&self, size: usize) -> Windows<T>`1.0.0[src]

Returns an iterator over all contiguous windows of length `size`. The windows overlap. If the slice is shorter than `size`, the iterator returns no values.

# Panics

Panics if `size` is 0.

# Examples

```let slice = ['r', 'u', 's', 't'];
let mut iter = slice.windows(2);
assert_eq!(iter.next().unwrap(), &['r', 'u']);
assert_eq!(iter.next().unwrap(), &['u', 's']);
assert_eq!(iter.next().unwrap(), &['s', 't']);
assert!(iter.next().is_none());```

If the slice is shorter than `size`:

```let slice = ['f', 'o', 'o'];
let mut iter = slice.windows(4);
assert!(iter.next().is_none());```

#### ⓘImportant traits for Chunks<'a, T>### Important traits for Chunks<'a, T> `impl<'a, T> Iterator for Chunks<'a, T> type Item = &'a [T];``pub fn chunks(&self, chunk_size: usize) -> Chunks<T>`1.0.0[src]

Returns an iterator over `chunk_size` elements of the slice at a time. The chunks are slices and do not overlap. If `chunk_size` does not divide the length of the slice, then the last chunk will not have length `chunk_size`.

See `exact_chunks` for a variant of this iterator that returns chunks of always exactly `chunk_size` elements.

# Panics

Panics if `chunk_size` is 0.

# Examples

```let slice = ['l', 'o', 'r', 'e', 'm'];
let mut iter = slice.chunks(2);
assert_eq!(iter.next().unwrap(), &['l', 'o']);
assert_eq!(iter.next().unwrap(), &['r', 'e']);
assert_eq!(iter.next().unwrap(), &['m']);
assert!(iter.next().is_none());```

#### ⓘImportant traits for ExactChunks<'a, T>### Important traits for ExactChunks<'a, T> `impl<'a, T> Iterator for ExactChunks<'a, T> type Item = &'a [T];``pub fn exact_chunks(&self, chunk_size: usize) -> ExactChunks<T>`[src]

🔬 This is a nightly-only experimental API. (`exact_chunks`)

Returns an iterator over `chunk_size` elements of the slice at a time. The chunks are slices and do not overlap. If `chunk_size` does not divide the length of the slice, then the last up to `chunk_size-1` elements will be omitted.

Due to each chunk having exactly `chunk_size` elements, the compiler can often optimize the resulting code better than in the case of `chunks`.

# Panics

Panics if `chunk_size` is 0.

# Examples

```#![feature(exact_chunks)]

let slice = ['l', 'o', 'r', 'e', 'm'];
let mut iter = slice.exact_chunks(2);
assert_eq!(iter.next().unwrap(), &['l', 'o']);
assert_eq!(iter.next().unwrap(), &['r', 'e']);
assert!(iter.next().is_none());```

#### ⓘImportant traits for ChunksMut<'a, T>### Important traits for ChunksMut<'a, T> `impl<'a, T> Iterator for ChunksMut<'a, T> type Item = &'a mut [T];``pub fn chunks_mut(&mut self, chunk_size: usize) -> ChunksMut<T>`1.0.0[src]

Returns an iterator over `chunk_size` elements of the slice at a time. The chunks are mutable slices, and do not overlap. If `chunk_size` does not divide the length of the slice, then the last chunk will not have length `chunk_size`.

See `exact_chunks_mut` for a variant of this iterator that returns chunks of always exactly `chunk_size` elements.

# Panics

Panics if `chunk_size` is 0.

# Examples

```let v = &mut [0, 0, 0, 0, 0];
let mut count = 1;

for chunk in v.chunks_mut(2) {
for elem in chunk.iter_mut() {
*elem += count;
}
count += 1;
}
assert_eq!(v, &[1, 1, 2, 2, 3]);```

#### ⓘImportant traits for ExactChunksMut<'a, T>### Important traits for ExactChunksMut<'a, T> `impl<'a, T> Iterator for ExactChunksMut<'a, T> type Item = &'a mut [T];``pub fn exact_chunks_mut(&mut self, chunk_size: usize) -> ExactChunksMut<T>`[src]

🔬 This is a nightly-only experimental API. (`exact_chunks`)

Returns an iterator over `chunk_size` elements of the slice at a time. The chunks are mutable slices, and do not overlap. If `chunk_size` does not divide the length of the slice, then the last up to `chunk_size-1` elements will be omitted.

Due to each chunk having exactly `chunk_size` elements, the compiler can often optimize the resulting code better than in the case of `chunks_mut`.

# Panics

Panics if `chunk_size` is 0.

# Examples

```#![feature(exact_chunks)]

let v = &mut [0, 0, 0, 0, 0];
let mut count = 1;

for chunk in v.exact_chunks_mut(2) {
for elem in chunk.iter_mut() {
*elem += count;
}
count += 1;
}
assert_eq!(v, &[1, 1, 2, 2, 0]);```

#### `pub fn split_at(&self, mid: usize) -> (&[T], &[T])`1.0.0[src]

Divides one slice into two at an index.

The first will contain all indices from `[0, mid)` (excluding the index `mid` itself) and the second will contain all indices from `[mid, len)` (excluding the index `len` itself).

# Panics

Panics if `mid > len`.

# Examples

```let v = [1, 2, 3, 4, 5, 6];

{
let (left, right) = v.split_at(0);
assert!(left == []);
assert!(right == [1, 2, 3, 4, 5, 6]);
}

{
let (left, right) = v.split_at(2);
assert!(left == [1, 2]);
assert!(right == [3, 4, 5, 6]);
}

{
let (left, right) = v.split_at(6);
assert!(left == [1, 2, 3, 4, 5, 6]);
assert!(right == []);
}```

#### `pub fn split_at_mut(&mut self, mid: usize) -> (&mut [T], &mut [T])`1.0.0[src]

Divides one mutable slice into two at an index.

The first will contain all indices from `[0, mid)` (excluding the index `mid` itself) and the second will contain all indices from `[mid, len)` (excluding the index `len` itself).

# Panics

Panics if `mid > len`.

# Examples

```let mut v = [1, 0, 3, 0, 5, 6];
// scoped to restrict the lifetime of the borrows
{
let (left, right) = v.split_at_mut(2);
assert!(left == [1, 0]);
assert!(right == [3, 0, 5, 6]);
left[1] = 2;
right[1] = 4;
}
assert!(v == [1, 2, 3, 4, 5, 6]);```

#### ⓘImportant traits for Split<'a, T, P>### Important traits for Split<'a, T, P> `impl<'a, T, P> Iterator for Split<'a, T, P> where    P: FnMut(&T) -> bool,  type Item = &'a [T];``pub fn split<F>(&self, pred: F) -> Split<T, F> where    F: FnMut(&T) -> bool, `1.0.0[src]

Returns an iterator over subslices separated by elements that match `pred`. The matched element is not contained in the subslices.

# Examples

```let slice = [10, 40, 33, 20];
let mut iter = slice.split(|num| num % 3 == 0);

assert_eq!(iter.next().unwrap(), &[10, 40]);
assert_eq!(iter.next().unwrap(), &[20]);
assert!(iter.next().is_none());```

If the first element is matched, an empty slice will be the first item returned by the iterator. Similarly, if the last element in the slice is matched, an empty slice will be the last item returned by the iterator:

```let slice = [10, 40, 33];
let mut iter = slice.split(|num| num % 3 == 0);

assert_eq!(iter.next().unwrap(), &[10, 40]);
assert_eq!(iter.next().unwrap(), &[]);
assert!(iter.next().is_none());```

If two matched elements are directly adjacent, an empty slice will be present between them:

```let slice = [10, 6, 33, 20];
let mut iter = slice.split(|num| num % 3 == 0);

assert_eq!(iter.next().unwrap(), &[10]);
assert_eq!(iter.next().unwrap(), &[]);
assert_eq!(iter.next().unwrap(), &[20]);
assert!(iter.next().is_none());```

#### ⓘImportant traits for SplitMut<'a, T, P>### Important traits for SplitMut<'a, T, P> `impl<'a, T, P> Iterator for SplitMut<'a, T, P> where    P: FnMut(&T) -> bool,  type Item = &'a mut [T];``pub fn split_mut<F>(&mut self, pred: F) -> SplitMut<T, F> where    F: FnMut(&T) -> bool, `1.0.0[src]

Returns an iterator over mutable subslices separated by elements that match `pred`. The matched element is not contained in the subslices.

# Examples

```let mut v = [10, 40, 30, 20, 60, 50];

for group in v.split_mut(|num| *num % 3 == 0) {
group[0] = 1;
}
assert_eq!(v, [1, 40, 30, 1, 60, 1]);```

#### ⓘImportant traits for RSplit<'a, T, P>### Important traits for RSplit<'a, T, P> `impl<'a, T, P> Iterator for RSplit<'a, T, P> where    P: FnMut(&T) -> bool,  type Item = &'a [T];``pub fn rsplit<F>(&self, pred: F) -> RSplit<T, F> where    F: FnMut(&T) -> bool, `1.27.0[src]

Returns an iterator over subslices separated by elements that match `pred`, starting at the end of the slice and working backwards. The matched element is not contained in the subslices.

# Examples

```let slice = [11, 22, 33, 0, 44, 55];
let mut iter = slice.rsplit(|num| *num == 0);

assert_eq!(iter.next().unwrap(), &[44, 55]);
assert_eq!(iter.next().unwrap(), &[11, 22, 33]);
assert_eq!(iter.next(), None);```

As with `split()`, if the first or last element is matched, an empty slice will be the first (or last) item returned by the iterator.

```let v = &[0, 1, 1, 2, 3, 5, 8];
let mut it = v.rsplit(|n| *n % 2 == 0);
assert_eq!(it.next().unwrap(), &[]);
assert_eq!(it.next().unwrap(), &[3, 5]);
assert_eq!(it.next().unwrap(), &[1, 1]);
assert_eq!(it.next().unwrap(), &[]);
assert_eq!(it.next(), None);```

#### ⓘImportant traits for RSplitMut<'a, T, P>### Important traits for RSplitMut<'a, T, P> `impl<'a, T, P> Iterator for RSplitMut<'a, T, P> where    P: FnMut(&T) -> bool,  type Item = &'a mut [T];``pub fn rsplit_mut<F>(&mut self, pred: F) -> RSplitMut<T, F> where    F: FnMut(&T) -> bool, `1.27.0[src]

Returns an iterator over mutable subslices separated by elements that match `pred`, starting at the end of the slice and working backwards. The matched element is not contained in the subslices.

# Examples

```let mut v = [100, 400, 300, 200, 600, 500];

let mut count = 0;
for group in v.rsplit_mut(|num| *num % 3 == 0) {
count += 1;
group[0] = count;
}
assert_eq!(v, [3, 400, 300, 2, 600, 1]);```

#### ⓘImportant traits for SplitN<'a, T, P>### Important traits for SplitN<'a, T, P> `impl<'a, T, P> Iterator for SplitN<'a, T, P> where    P: FnMut(&T) -> bool,  type Item = &'a [T];``pub fn splitn<F>(&self, n: usize, pred: F) -> SplitN<T, F> where    F: FnMut(&T) -> bool, `1.0.0[src]

Returns an iterator over subslices separated by elements that match `pred`, limited to returning at most `n` items. The matched element is not contained in the subslices.

The last element returned, if any, will contain the remainder of the slice.

# Examples

Print the slice split once by numbers divisible by 3 (i.e. `[10, 40]`, `[20, 60, 50]`):

```let v = [10, 40, 30, 20, 60, 50];

for group in v.splitn(2, |num| *num % 3 == 0) {
println!("{:?}", group);
}```

#### ⓘImportant traits for SplitNMut<'a, T, P>### Important traits for SplitNMut<'a, T, P> `impl<'a, T, P> Iterator for SplitNMut<'a, T, P> where    P: FnMut(&T) -> bool,  type Item = &'a mut [T];``pub fn splitn_mut<F>(&mut self, n: usize, pred: F) -> SplitNMut<T, F> where    F: FnMut(&T) -> bool, `1.0.0[src]

Returns an iterator over subslices separated by elements that match `pred`, limited to returning at most `n` items. The matched element is not contained in the subslices.

The last element returned, if any, will contain the remainder of the slice.

# Examples

```let mut v = [10, 40, 30, 20, 60, 50];

for group in v.splitn_mut(2, |num| *num % 3 == 0) {
group[0] = 1;
}
assert_eq!(v, [1, 40, 30, 1, 60, 50]);```

#### ⓘImportant traits for RSplitN<'a, T, P>### Important traits for RSplitN<'a, T, P> `impl<'a, T, P> Iterator for RSplitN<'a, T, P> where    P: FnMut(&T) -> bool,  type Item = &'a [T];``pub fn rsplitn<F>(&self, n: usize, pred: F) -> RSplitN<T, F> where    F: FnMut(&T) -> bool, `1.0.0[src]

Returns an iterator over subslices separated by elements that match `pred` limited to returning at most `n` items. This starts at the end of the slice and works backwards. The matched element is not contained in the subslices.

The last element returned, if any, will contain the remainder of the slice.

# Examples

Print the slice split once, starting from the end, by numbers divisible by 3 (i.e. `[50]`, `[10, 40, 30, 20]`):

```let v = [10, 40, 30, 20, 60, 50];

for group in v.rsplitn(2, |num| *num % 3 == 0) {
println!("{:?}", group);
}```

#### ⓘImportant traits for RSplitNMut<'a, T, P>### Important traits for RSplitNMut<'a, T, P> `impl<'a, T, P> Iterator for RSplitNMut<'a, T, P> where    P: FnMut(&T) -> bool,  type Item = &'a mut [T];``pub fn rsplitn_mut<F>(&mut self, n: usize, pred: F) -> RSplitNMut<T, F> where    F: FnMut(&T) -> bool, `1.0.0[src]

Returns an iterator over subslices separated by elements that match `pred` limited to returning at most `n` items. This starts at the end of the slice and works backwards. The matched element is not contained in the subslices.

The last element returned, if any, will contain the remainder of the slice.

# Examples

```let mut s = [10, 40, 30, 20, 60, 50];

for group in s.rsplitn_mut(2, |num| *num % 3 == 0) {
group[0] = 1;
}
assert_eq!(s, [1, 40, 30, 20, 60, 1]);```

#### `pub fn contains(&self, x: &T) -> bool where    T: PartialEq<T>, `1.0.0[src]

Returns `true` if the slice contains an element with the given value.

# Examples

```let v = [10, 40, 30];
assert!(v.contains(&30));
assert!(!v.contains(&50));```

#### `pub fn starts_with(&self, needle: &[T]) -> bool where    T: PartialEq<T>, `1.0.0[src]

Returns `true` if `needle` is a prefix of the slice.

# Examples

```let v = [10, 40, 30];
assert!(v.starts_with(&[10]));
assert!(v.starts_with(&[10, 40]));
assert!(!v.starts_with(&[50]));
assert!(!v.starts_with(&[10, 50]));```

Always returns `true` if `needle` is an empty slice:

```let v = &[10, 40, 30];
assert!(v.starts_with(&[]));
let v: &[u8] = &[];
assert!(v.starts_with(&[]));```

#### `pub fn ends_with(&self, needle: &[T]) -> bool where    T: PartialEq<T>, `1.0.0[src]

Returns `true` if `needle` is a suffix of the slice.

# Examples

```let v = [10, 40, 30];
assert!(v.ends_with(&[30]));
assert!(v.ends_with(&[40, 30]));
assert!(!v.ends_with(&[50]));
assert!(!v.ends_with(&[50, 30]));```

Always returns `true` if `needle` is an empty slice:

```let v = &[10, 40, 30];
assert!(v.ends_with(&[]));
let v: &[u8] = &[];
assert!(v.ends_with(&[]));```

Binary searches this sorted slice for a given element.

If the value is found then `Ok` is returned, containing the index of the matching element; if the value is not found then `Err` is returned, containing the index where a matching element could be inserted while maintaining sorted order.

# Examples

Looks up a series of four elements. The first is found, with a uniquely determined position; the second and third are not found; the fourth could match any position in `[1, 4]`.

```let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];

assert_eq!(s.binary_search(&13),  Ok(9));
assert_eq!(s.binary_search(&4),   Err(7));
assert_eq!(s.binary_search(&100), Err(13));
let r = s.binary_search(&1);
assert!(match r { Ok(1...4) => true, _ => false, });```

#### `pub fn binary_search_by<'a, F>(&'a self, f: F) -> Result<usize, usize> where    F: FnMut(&'a T) -> Ordering, `1.0.0[src]

Binary searches this sorted slice with a comparator function.

The comparator function should implement an order consistent with the sort order of the underlying slice, returning an order code that indicates whether its argument is `Less`, `Equal` or `Greater` the desired target.

If a matching value is found then returns `Ok`, containing the index for the matched element; if no match is found then `Err` is returned, containing the index where a matching element could be inserted while maintaining sorted order.

# Examples

Looks up a series of four elements. The first is found, with a uniquely determined position; the second and third are not found; the fourth could match any position in `[1, 4]`.

```let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55];

let seek = 13;
assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Ok(9));
let seek = 4;
assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(7));
let seek = 100;
assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(13));
let seek = 1;
let r = s.binary_search_by(|probe| probe.cmp(&seek));
assert!(match r { Ok(1...4) => true, _ => false, });```

#### `pub fn binary_search_by_key<'a, B, F>(    &'a self,     b: &B,     f: F) -> Result<usize, usize> where    B: Ord,    F: FnMut(&'a T) -> B, `1.10.0[src]

Binary searches this sorted slice with a key extraction function.

Assumes that the slice is sorted by the key, for instance with `sort_by_key` using the same key extraction function.

If a matching value is found then returns `Ok`, containing the index for the matched element; if no match is found then `Err` is returned, containing the index where a matching element could be inserted while maintaining sorted order.

# Examples

Looks up a series of four elements in a slice of pairs sorted by their second elements. The first is found, with a uniquely determined position; the second and third are not found; the fourth could match any position in `[1, 4]`.

```let s = [(0, 0), (2, 1), (4, 1), (5, 1), (3, 1),
(1, 2), (2, 3), (4, 5), (5, 8), (3, 13),
(1, 21), (2, 34), (4, 55)];

assert_eq!(s.binary_search_by_key(&13, |&(a,b)| b),  Ok(9));
assert_eq!(s.binary_search_by_key(&4, |&(a,b)| b),   Err(7));
assert_eq!(s.binary_search_by_key(&100, |&(a,b)| b), Err(13));
let r = s.binary_search_by_key(&1, |&(a,b)| b);
assert!(match r { Ok(1...4) => true, _ => false, });```

#### `pub fn sort_unstable(&mut self) where    T: Ord, `1.20.0[src]

Sorts the slice, but may not preserve the order of equal elements.

This sort is unstable (i.e. may reorder equal elements), in-place (i.e. does not allocate), and `O(n log n)` worst-case.

# Current implementation

The current algorithm is based on pattern-defeating quicksort by Orson Peters, which combines the fast average case of randomized quicksort with the fast worst case of heapsort, while achieving linear time on slices with certain patterns. It uses some randomization to avoid degenerate cases, but with a fixed seed to always provide deterministic behavior.

It is typically faster than stable sorting, except in a few special cases, e.g. when the slice consists of several concatenated sorted sequences.

# Examples

```let mut v = [-5, 4, 1, -3, 2];

v.sort_unstable();
assert!(v == [-5, -3, 1, 2, 4]);```

#### `pub fn sort_unstable_by<F>(&mut self, compare: F) where    F: FnMut(&T, &T) -> Ordering, `1.20.0[src]

Sorts the slice with a comparator function, but may not preserve the order of equal elements.

This sort is unstable (i.e. may reorder equal elements), in-place (i.e. does not allocate), and `O(n log n)` worst-case.

# Current implementation

The current algorithm is based on pattern-defeating quicksort by Orson Peters, which combines the fast average case of randomized quicksort with the fast worst case of heapsort, while achieving linear time on slices with certain patterns. It uses some randomization to avoid degenerate cases, but with a fixed seed to always provide deterministic behavior.

It is typically faster than stable sorting, except in a few special cases, e.g. when the slice consists of several concatenated sorted sequences.

# Examples

```let mut v = [5, 4, 1, 3, 2];
v.sort_unstable_by(|a, b| a.cmp(b));
assert!(v == [1, 2, 3, 4, 5]);

// reverse sorting
v.sort_unstable_by(|a, b| b.cmp(a));
assert!(v == [5, 4, 3, 2, 1]);```

#### `pub fn sort_unstable_by_key<K, F>(&mut self, f: F) where    F: FnMut(&T) -> K,    K: Ord, `1.20.0[src]

Sorts the slice with a key extraction function, but may not preserve the order of equal elements.

This sort is unstable (i.e. may reorder equal elements), in-place (i.e. does not allocate), and `O(m n log(m n))` worst-case, where the key function is `O(m)`.

# Current implementation

The current algorithm is based on pattern-defeating quicksort by Orson Peters, which combines the fast average case of randomized quicksort with the fast worst case of heapsort, while achieving linear time on slices with certain patterns. It uses some randomization to avoid degenerate cases, but with a fixed seed to always provide deterministic behavior.

# Examples

```let mut v = [-5i32, 4, 1, -3, 2];

v.sort_unstable_by_key(|k| k.abs());
assert!(v == [1, 2, -3, 4, -5]);```

#### `pub fn rotate_left(&mut self, mid: usize)`1.26.0[src]

Rotates the slice in-place such that the first `mid` elements of the slice move to the end while the last `self.len() - mid` elements move to the front. After calling `rotate_left`, the element previously at index `mid` will become the first element in the slice.

# Panics

This function will panic if `mid` is greater than the length of the slice. Note that `mid == self.len()` does not panic and is a no-op rotation.

# Complexity

Takes linear (in `self.len()`) time.

# Examples

```let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
a.rotate_left(2);
assert_eq!(a, ['c', 'd', 'e', 'f', 'a', 'b']);```

Rotating a subslice:

```let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
a[1..5].rotate_left(1);
assert_eq!(a, ['a', 'c', 'd', 'e', 'b', 'f']);```

#### `pub fn rotate_right(&mut self, k: usize)`1.26.0[src]

Rotates the slice in-place such that the first `self.len() - k` elements of the slice move to the end while the last `k` elements move to the front. After calling `rotate_right`, the element previously at index `self.len() - k` will become the first element in the slice.

# Panics

This function will panic if `k` is greater than the length of the slice. Note that `k == self.len()` does not panic and is a no-op rotation.

# Complexity

Takes linear (in `self.len()`) time.

# Examples

```let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
a.rotate_right(2);
assert_eq!(a, ['e', 'f', 'a', 'b', 'c', 'd']);```

Rotate a subslice:

```let mut a = ['a', 'b', 'c', 'd', 'e', 'f'];
a[1..5].rotate_right(1);
assert_eq!(a, ['a', 'e', 'b', 'c', 'd', 'f']);```

#### `pub fn clone_from_slice(&mut self, src: &[T]) where    T: Clone, `1.7.0[src]

Copies the elements from `src` into `self`.

The length of `src` must be the same as `self`.

If `src` implements `Copy`, it can be more performant to use `copy_from_slice`.

# Panics

This function will panic if the two slices have different lengths.

# Examples

Cloning two elements from a slice into another:

```let src = [1, 2, 3, 4];
let mut dst = [0, 0];

dst.clone_from_slice(&src[2..]);

assert_eq!(src, [1, 2, 3, 4]);
assert_eq!(dst, [3, 4]);```

Rust enforces that there can only be one mutable reference with no immutable references to a particular piece of data in a particular scope. Because of this, attempting to use `clone_from_slice` on a single slice will result in a compile failure:

```let mut slice = [1, 2, 3, 4, 5];

slice[..2].clone_from_slice(&slice[3..]); // compile fail!```

To work around this, we can use `split_at_mut` to create two distinct sub-slices from a slice:

```let mut slice = [1, 2, 3, 4, 5];

{
let (left, right) = slice.split_at_mut(2);
left.clone_from_slice(&right[1..]);
}

assert_eq!(slice, [4, 5, 3, 4, 5]);```

#### `pub fn copy_from_slice(&mut self, src: &[T]) where    T: Copy, `1.9.0[src]

Copies all elements from `src` into `self`, using a memcpy.

The length of `src` must be the same as `self`.

If `src` does not implement `Copy`, use `clone_from_slice`.

# Panics

This function will panic if the two slices have different lengths.

# Examples

Copying two elements from a slice into another:

```let src = [1, 2, 3, 4];
let mut dst = [0, 0];

dst.copy_from_slice(&src[2..]);

assert_eq!(src, [1, 2, 3, 4]);
assert_eq!(dst, [3, 4]);```

Rust enforces that there can only be one mutable reference with no immutable references to a particular piece of data in a particular scope. Because of this, attempting to use `copy_from_slice` on a single slice will result in a compile failure:

```let mut slice = [1, 2, 3, 4, 5];

slice[..2].copy_from_slice(&slice[3..]); // compile fail!```

To work around this, we can use `split_at_mut` to create two distinct sub-slices from a slice:

```let mut slice = [1, 2, 3, 4, 5];

{
let (left, right) = slice.split_at_mut(2);
left.copy_from_slice(&right[1..]);
}

assert_eq!(slice, [4, 5, 3, 4, 5]);```

#### `pub fn swap_with_slice(&mut self, other: &mut [T])`1.27.0[src]

Swaps all elements in `self` with those in `other`.

The length of `other` must be the same as `self`.

# Panics

This function will panic if the two slices have different lengths.

# Example

Swapping two elements across slices:

```let mut slice1 = [0, 0];
let mut slice2 = [1, 2, 3, 4];

slice1.swap_with_slice(&mut slice2[2..]);

assert_eq!(slice1, [3, 4]);
assert_eq!(slice2, [1, 2, 0, 0]);```

Rust enforces that there can only be one mutable reference to a particular piece of data in a particular scope. Because of this, attempting to use `swap_with_slice` on a single slice will result in a compile failure:

```let mut slice = [1, 2, 3, 4, 5];
slice[..2].swap_with_slice(&mut slice[3..]); // compile fail!```

To work around this, we can use `split_at_mut` to create two distinct mutable sub-slices from a slice:

```let mut slice = [1, 2, 3, 4, 5];

{
let (left, right) = slice.split_at_mut(2);
left.swap_with_slice(&mut right[1..]);
}

assert_eq!(slice, [4, 5, 3, 1, 2]);```

#### `pub unsafe fn align_to<U>(&self) -> (&[T], &[U], &[T])`[src]

🔬 This is a nightly-only experimental API. (`slice_align_to`)

Transmute the slice to a slice of another type, ensuring aligment of the types is maintained.

This method splits the slice into three distinct slices: prefix, correctly aligned middle slice of a new type, and the suffix slice. The middle slice will have the greatest length possible for a given type and input slice.

This method has no purpose when either input element `T` or output element `U` are zero-sized and will return the original slice without splitting anything.

# Unsafety

This method is essentially a `transmute` with respect to the elements in the returned middle slice, so all the usual caveats pertaining to `transmute::<T, U>` also apply here.

# Examples

Basic usage:

```unsafe {
let bytes: [u8; 7] = [1, 2, 3, 4, 5, 6, 7];
let (prefix, shorts, suffix) = bytes.align_to::<u16>();
// less_efficient_algorithm_for_bytes(prefix);
// more_efficient_algorithm_for_aligned_shorts(shorts);
// less_efficient_algorithm_for_bytes(suffix);
}```

#### `pub unsafe fn align_to_mut<U>(&mut self) -> (&mut [T], &mut [U], &mut [T])`[src]

🔬 This is a nightly-only experimental API. (`slice_align_to`)

Transmute the slice to a slice of another type, ensuring aligment of the types is maintained.

This method splits the slice into three distinct slices: prefix, correctly aligned middle slice of a new type, and the suffix slice. The middle slice will have the greatest length possible for a given type and input slice.

This method has no purpose when either input element `T` or output element `U` are zero-sized and will return the original slice without splitting anything.

# Unsafety

This method is essentially a `transmute` with respect to the elements in the returned middle slice, so all the usual caveats pertaining to `transmute::<T, U>` also apply here.

# Examples

Basic usage:

```unsafe {
let mut bytes: [u8; 7] = [1, 2, 3, 4, 5, 6, 7];
let (prefix, shorts, suffix) = bytes.align_to_mut::<u16>();
// less_efficient_algorithm_for_bytes(prefix);
// more_efficient_algorithm_for_aligned_shorts(shorts);
// less_efficient_algorithm_for_bytes(suffix);
}```

#### `pub fn is_ascii(&self) -> bool`1.23.0[src]

Checks if all bytes in this slice are within the ASCII range.

#### `pub fn eq_ignore_ascii_case(&self, other: &[u8]) -> bool`1.23.0[src]

Checks that two slices are an ASCII case-insensitive match.

Same as `to_ascii_lowercase(a) == to_ascii_lowercase(b)`, but without allocating and copying temporaries.

#### `pub fn make_ascii_uppercase(&mut self)`1.23.0[src]

Converts this slice to its ASCII upper case equivalent in-place.

ASCII letters 'a' to 'z' are mapped to 'A' to 'Z', but non-ASCII letters are unchanged.

To return a new uppercased value without modifying the existing one, use `to_ascii_uppercase`.

#### `pub fn make_ascii_lowercase(&mut self)`1.23.0[src]

Converts this slice to its ASCII lower case equivalent in-place.

ASCII letters 'A' to 'Z' are mapped to 'a' to 'z', but non-ASCII letters are unchanged.

To return a new lowercased value without modifying the existing one, use `to_ascii_lowercase`.

#### `pub fn sort(&mut self) where    T: Ord, `1.0.0[src]

Sorts the slice.

This sort is stable (i.e. does not reorder equal elements) and `O(n log n)` worst-case.

When applicable, unstable sorting is preferred because it is generally faster than stable sorting and it doesn't allocate auxiliary memory. See `sort_unstable`.

# Current implementation

The current algorithm is an adaptive, iterative merge sort inspired by timsort. It is designed to be very fast in cases where the slice is nearly sorted, or consists of two or more sorted sequences concatenated one after another.

Also, it allocates temporary storage half the size of `self`, but for short slices a non-allocating insertion sort is used instead.

# Examples

```let mut v = [-5, 4, 1, -3, 2];

v.sort();
assert!(v == [-5, -3, 1, 2, 4]);```

#### `pub fn sort_by<F>(&mut self, compare: F) where    F: FnMut(&T, &T) -> Ordering, `1.0.0[src]

Sorts the slice with a comparator function.

This sort is stable (i.e. does not reorder equal elements) and `O(n log n)` worst-case.

When applicable, unstable sorting is preferred because it is generally faster than stable sorting and it doesn't allocate auxiliary memory. See `sort_unstable_by`.

# Current implementation

The current algorithm is an adaptive, iterative merge sort inspired by timsort. It is designed to be very fast in cases where the slice is nearly sorted, or consists of two or more sorted sequences concatenated one after another.

Also, it allocates temporary storage half the size of `self`, but for short slices a non-allocating insertion sort is used instead.

# Examples

```let mut v = [5, 4, 1, 3, 2];
v.sort_by(|a, b| a.cmp(b));
assert!(v == [1, 2, 3, 4, 5]);

// reverse sorting
v.sort_by(|a, b| b.cmp(a));
assert!(v == [5, 4, 3, 2, 1]);```

#### `pub fn sort_by_key<K, F>(&mut self, f: F) where    F: FnMut(&T) -> K,    K: Ord, `1.7.0[src]

Sorts the slice with a key extraction function.

This sort is stable (i.e. does not reorder equal elements) and `O(m n log(m n))` worst-case, where the key function is `O(m)`.

When applicable, unstable sorting is preferred because it is generally faster than stable sorting and it doesn't allocate auxiliary memory. See `sort_unstable_by_key`.

# Current implementation

The current algorithm is an adaptive, iterative merge sort inspired by timsort. It is designed to be very fast in cases where the slice is nearly sorted, or consists of two or more sorted sequences concatenated one after another.

Also, it allocates temporary storage half the size of `self`, but for short slices a non-allocating insertion sort is used instead.

# Examples

```let mut v = [-5i32, 4, 1, -3, 2];

v.sort_by_key(|k| k.abs());
assert!(v == [1, 2, -3, 4, -5]);```

#### `pub fn sort_by_cached_key<K, F>(&mut self, f: F) where    F: FnMut(&T) -> K,    K: Ord, `[src]

🔬 This is a nightly-only experimental API. (`slice_sort_by_cached_key`)

Sorts the slice with a key extraction function.

During sorting, the key function is called only once per element.

This sort is stable (i.e. does not reorder equal elements) and `O(m n + n log n)` worst-case, where the key function is `O(m)`.

For simple key functions (e.g. functions that are property accesses or basic operations), `sort_by_key` is likely to be faster.

# Current implementation

The current algorithm is based on pattern-defeating quicksort by Orson Peters, which combines the fast average case of randomized quicksort with the fast worst case of heapsort, while achieving linear time on slices with certain patterns. It uses some randomization to avoid degenerate cases, but with a fixed seed to always provide deterministic behavior.

In the worst case, the algorithm allocates temporary storage in a `Vec<(K, usize)>` the length of the slice.

# Examples

```#![feature(slice_sort_by_cached_key)]
let mut v = [-5i32, 4, 32, -3, 2];

v.sort_by_cached_key(|k| k.to_string());
assert!(v == [-3, -5, 2, 32, 4]);```

#### ⓘImportant traits for Vec<u8>### Important traits for Vec<u8> `impl Write for Vec<u8>``pub fn to_vec(&self) -> Vec<T> where    T: Clone, `1.0.0[src]

Copies `self` into a new `Vec`.

# Examples

```let s = [10, 40, 30];
let x = s.to_vec();
// Here, `s` and `x` can be modified independently.```

#### ⓘImportant traits for Vec<u8>### Important traits for Vec<u8> `impl Write for Vec<u8>``pub fn repeat(&self, n: usize) -> Vec<T> where    T: Copy, `[src]

🔬 This is a nightly-only experimental API. (`repeat_generic_slice`)

it's on str, why not on slice?

Creates a vector by repeating a slice `n` times.

# Examples

Basic usage:

```#![feature(repeat_generic_slice)]

fn main() {
assert_eq!([1, 2].repeat(3), vec![1, 2, 1, 2, 1, 2]);
}```

#### ⓘImportant traits for Vec<u8>### Important traits for Vec<u8> `impl Write for Vec<u8>``pub fn to_ascii_uppercase(&self) -> Vec<u8>`1.23.0[src]

Returns a vector containing a copy of this slice where each byte is mapped to its ASCII upper case equivalent.

ASCII letters 'a' to 'z' are mapped to 'A' to 'Z', but non-ASCII letters are unchanged.

To uppercase the value in-place, use `make_ascii_uppercase`.

#### ⓘImportant traits for Vec<u8>### Important traits for Vec<u8> `impl Write for Vec<u8>``pub fn to_ascii_lowercase(&self) -> Vec<u8>`1.23.0[src]

Returns a vector containing a copy of this slice where each byte is mapped to its ASCII lower case equivalent.

ASCII letters 'A' to 'Z' are mapped to 'a' to 'z', but non-ASCII letters are unchanged.

To lowercase the value in-place, use `make_ascii_lowercase`.

## Trait Implementations

### `impl<A: Array> Deref for SmallVec<A>`[src]

#### `type Target = [A::Item]`

The resulting type after dereferencing.

#### ⓘImportant traits for &'a [u8]### Important traits for &'a [u8] `impl<'a> Read for &'a [u8]impl<'a> Write for &'a mut [u8]``fn deref(&self) -> &[A::Item]`[src]

Dereferences the value.

### `impl<A: Array> DerefMut for SmallVec<A>`[src]

#### ⓘImportant traits for &'a [u8]### Important traits for &'a [u8] `impl<'a> Read for &'a [u8]impl<'a> Write for &'a mut [u8]``fn deref_mut(&mut self) -> &mut [A::Item]`[src]

Mutably dereferences the value.

### `impl<A: Array> AsRef<[A::Item]> for SmallVec<A>`[src]

#### ⓘImportant traits for &'a [u8]### Important traits for &'a [u8] `impl<'a> Read for &'a [u8]impl<'a> Write for &'a mut [u8]``fn as_ref(&self) -> &[A::Item]`[src]

Performs the conversion.

### `impl<A: Array> AsMut<[A::Item]> for SmallVec<A>`[src]

#### ⓘImportant traits for &'a [u8]### Important traits for &'a [u8] `impl<'a> Read for &'a [u8]impl<'a> Write for &'a mut [u8]``fn as_mut(&mut self) -> &mut [A::Item]`[src]

Performs the conversion.

### `impl<A: Array> Borrow<[A::Item]> for SmallVec<A>`[src]

#### ⓘImportant traits for &'a [u8]### Important traits for &'a [u8] `impl<'a> Read for &'a [u8]impl<'a> Write for &'a mut [u8]``fn borrow(&self) -> &[A::Item]`[src]

Immutably borrows from an owned value. Read more

### `impl<A: Array> BorrowMut<[A::Item]> for SmallVec<A>`[src]

#### ⓘImportant traits for &'a [u8]### Important traits for &'a [u8] `impl<'a> Read for &'a [u8]impl<'a> Write for &'a mut [u8]``fn borrow_mut(&mut self) -> &mut [A::Item]`[src]

Mutably borrows from an owned value. Read more

### `impl<A: Array<Item = u8>> Write for SmallVec<A>`[src]

#### `fn write(&mut self, buf: &[u8]) -> Result<usize>`[src]

Write a buffer into this object, returning how many bytes were written. Read more

#### `fn write_all(&mut self, buf: &[u8]) -> Result<()>`[src]

Attempts to write an entire buffer into this write. Read more

#### `fn flush(&mut self) -> Result<()>`[src]

Flush this output stream, ensuring that all intermediately buffered contents reach their destination. Read more

#### `fn write_fmt(&mut self, fmt: Arguments) -> Result<(), Error>`1.0.0[src]

Writes a formatted string into this writer, returning any error encountered. Read more

#### ⓘImportant traits for &'a mut R### Important traits for &'a mut R `impl<'a, R> Read for &'a mut R where    R: Read + ?Sized, impl<'a, W> Write for &'a mut W where    W: Write + ?Sized, impl<'a, I> Iterator for &'a mut I where    I: Iterator + ?Sized,  type Item = <I as Iterator>::Item;``fn by_ref(&mut self) -> &mut Self`1.0.0[src]

Creates a "by reference" adaptor for this instance of `Write`. Read more

### `impl<A: Array, T> From<T> for SmallVec<A> where    T: Into<SV<A>>, `[src]

#### ⓘImportant traits for SmallVec<A>### Important traits for SmallVec<A> `impl<A: Array<Item = u8>> Write for SmallVec<A>``fn from(t: T) -> SmallVec<A>`[src]

Performs the conversion.

### `impl<A: Array> Index<usize> for SmallVec<A>`[src]

#### `type Output = A::Item`

The returned type after indexing.

#### `fn index(&self, index: usize) -> &A::Item`[src]

Performs the indexing (`container[index]`) operation.

### `impl<A: Array> IndexMut<usize> for SmallVec<A>`[src]

#### `fn index_mut(&mut self, index: usize) -> &mut A::Item`[src]

Performs the mutable indexing (`container[index]`) operation.

### `impl<A: Array> Index<Range<usize>> for SmallVec<A>`[src]

#### `type Output = [A::Item]`

The returned type after indexing.

#### ⓘImportant traits for &'a [u8]### Important traits for &'a [u8] `impl<'a> Read for &'a [u8]impl<'a> Write for &'a mut [u8]``fn index(&self, index: Range<usize>) -> &[A::Item]`[src]

Performs the indexing (`container[index]`) operation.

### `impl<A: Array> IndexMut<Range<usize>> for SmallVec<A>`[src]

#### ⓘImportant traits for &'a [u8]### Important traits for &'a [u8] `impl<'a> Read for &'a [u8]impl<'a> Write for &'a mut [u8]``fn index_mut(&mut self, index: Range<usize>) -> &mut [A::Item]`[src]

Performs the mutable indexing (`container[index]`) operation.

### `impl<A: Array> Index<RangeFrom<usize>> for SmallVec<A>`[src]

#### `type Output = [A::Item]`

The returned type after indexing.

#### ⓘImportant traits for &'a [u8]### Important traits for &'a [u8] `impl<'a> Read for &'a [u8]impl<'a> Write for &'a mut [u8]``fn index(&self, index: RangeFrom<usize>) -> &[A::Item]`[src]

Performs the indexing (`container[index]`) operation.

### `impl<A: Array> IndexMut<RangeFrom<usize>> for SmallVec<A>`[src]

#### ⓘImportant traits for &'a [u8]### Important traits for &'a [u8] `impl<'a> Read for &'a [u8]impl<'a> Write for &'a mut [u8]``fn index_mut(&mut self, index: RangeFrom<usize>) -> &mut [A::Item]`[src]

Performs the mutable indexing (`container[index]`) operation.

### `impl<A: Array> Index<RangeTo<usize>> for SmallVec<A>`[src]

#### `type Output = [A::Item]`

The returned type after indexing.

#### ⓘImportant traits for &'a [u8]### Important traits for &'a [u8] `impl<'a> Read for &'a [u8]impl<'a> Write for &'a mut [u8]``fn index(&self, index: RangeTo<usize>) -> &[A::Item]`[src]

Performs the indexing (`container[index]`) operation.

### `impl<A: Array> IndexMut<RangeTo<usize>> for SmallVec<A>`[src]

#### ⓘImportant traits for &'a [u8]### Important traits for &'a [u8] `impl<'a> Read for &'a [u8]impl<'a> Write for &'a mut [u8]``fn index_mut(&mut self, index: RangeTo<usize>) -> &mut [A::Item]`[src]

Performs the mutable indexing (`container[index]`) operation.

### `impl<A: Array> Index<RangeFull> for SmallVec<A>`[src]

#### `type Output = [A::Item]`

The returned type after indexing.

#### ⓘImportant traits for &'a [u8]### Important traits for &'a [u8] `impl<'a> Read for &'a [u8]impl<'a> Write for &'a mut [u8]``fn index(&self, index: RangeFull) -> &[A::Item]`[src]

Performs the indexing (`container[index]`) operation.

### `impl<A: Array> IndexMut<RangeFull> for SmallVec<A>`[src]

#### ⓘImportant traits for &'a [u8]### Important traits for &'a [u8] `impl<'a> Read for &'a [u8]impl<'a> Write for &'a mut [u8]``fn index_mut(&mut self, index: RangeFull) -> &mut [A::Item]`[src]

Performs the mutable indexing (`container[index]`) operation.

### `impl<A: Array> ExtendFromSlice<A::Item> for SmallVec<A> where    A::Item: Copy, `[src]

#### `fn extend_from_slice(&mut self, slice: &[A::Item])`[src]

Extends a collection from a slice of its element type

### `impl<A: Array> FromIterator<A::Item> for SmallVec<A>`[src]

#### ⓘImportant traits for SmallVec<A>### Important traits for SmallVec<A> `impl<A: Array<Item = u8>> Write for SmallVec<A>``fn from_iter<I: IntoIterator<Item = A::Item>>(iterable: I) -> SmallVec<A>`[src]

Creates a value from an iterator. Read more

### `impl<A: Array> Extend<A::Item> for SmallVec<A>`[src]

#### `fn extend<I: IntoIterator<Item = A::Item>>(&mut self, iterable: I)`[src]

Extends a collection with the contents of an iterator. Read more

### `impl<A: Array> Debug for SmallVec<A> where    A::Item: Debug, `[src]

#### `fn fmt(&self, f: &mut Formatter) -> Result`[src]

Formats the value using the given formatter. Read more

### `impl<A: Array> Default for SmallVec<A>`[src]

#### ⓘImportant traits for SmallVec<A>### Important traits for SmallVec<A> `impl<A: Array<Item = u8>> Write for SmallVec<A>``fn default() -> SmallVec<A>`[src]

Returns the "default value" for a type. Read more

### `impl<A: Array> Drop for SmallVec<A>`[src]

#### `fn drop(&mut self)`[src]

Executes the destructor for this type. Read more

### `impl<A: Array> Clone for SmallVec<A> where    A::Item: Clone, `[src]

#### ⓘImportant traits for SmallVec<A>### Important traits for SmallVec<A> `impl<A: Array<Item = u8>> Write for SmallVec<A>``fn clone(&self) -> SmallVec<A>`[src]

Returns a copy of the value. Read more

#### `fn clone_from(&mut self, source: &Self)`1.0.0[src]

Performs copy-assignment from `source`. Read more