1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310
/* This file is part of sled-overlay
*
* Copyright (C) 2023-2024 Dyne.org foundation
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU Affero General Public License as
* published by the Free Software Foundation, either version 3 of the
* License, or (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU Affero General Public License for more details.
*
* You should have received a copy of the GNU Affero General Public License
* along with this program. If not, see <https://www.gnu.org/licenses/>.
*/
use std::collections::{BTreeMap, BTreeSet};
use sled::IVec;
/// Struct representing [`SledTreeOverlay`] cache state
#[derive(Debug, Clone, PartialEq)]
pub struct SledTreeOverlayState {
/// The cache is the actual overlayed data represented as a [`BTreeMap`].
pub cache: BTreeMap<IVec, IVec>,
/// In `removed`, we keep track of keys that were removed in the overlay.
pub removed: BTreeSet<IVec>,
}
impl SledTreeOverlayState {
/// Instantiate a new [`SledTreeOverlayState`].
pub fn new() -> Self {
Self {
cache: BTreeMap::new(),
removed: BTreeSet::new(),
}
}
/// Aggregate all the current tree overlay state changes into
/// a [`sled::Batch`] ready for further operation.
/// If there are no changes, return `None`.
pub fn aggregate(&self) -> Option<sled::Batch> {
if self.cache.is_empty() && self.removed.is_empty() {
return None;
}
let mut batch = sled::Batch::default();
// This kind of first-insert-then-remove operation should be fine
// provided it's handled correctly in the above functions.
for (k, v) in self.cache.iter() {
batch.insert(k, v);
}
for k in self.removed.iter() {
batch.remove(k);
}
Some(batch)
}
/// Add provided tree overlay state changes to our own.
pub fn add_diff(&mut self, other: &Self) {
// Add all new keys into cache
for (k, v) in other.cache.iter() {
self.removed.remove(k);
self.cache.insert(k.clone(), v.clone());
}
// Remove dropped keys
for k in other.removed.iter() {
self.cache.remove(k);
self.removed.insert(k.clone());
}
}
/// Remove provided tree overlay state changes from our own.
pub fn remove_diff(&mut self, other: &Self) {
for (k, v) in other.cache.iter() {
// Skip if its not in cache
let Some(value) = self.cache.get(k) else {
continue;
};
// Check if its value has been modified again
if v != value {
continue;
}
self.cache.remove(k);
}
for k in other.removed.iter() {
self.removed.remove(k);
}
}
}
impl Default for SledTreeOverlayState {
fn default() -> Self {
Self::new()
}
}
/// An overlay on top of a single [`sled::Tree`] instance
#[derive(Debug, Clone)]
pub struct SledTreeOverlay {
/// The [`sled::Tree`] that is being overlayed.
tree: sled::Tree,
/// Current overlay cache state
pub state: SledTreeOverlayState,
/// Checkpointed cache state to revert to
checkpoint: SledTreeOverlayState,
}
impl SledTreeOverlay {
/// Instantiate a new [`SledTreeOverlay`] on top of a given [`sled::Tree`].
pub fn new(tree: &sled::Tree) -> Self {
Self {
tree: tree.clone(),
state: SledTreeOverlayState::new(),
checkpoint: SledTreeOverlayState::new(),
}
}
/// Returns `true` if the overlay contains a value for a specified key.
pub fn contains_key(&self, key: &[u8]) -> Result<bool, sled::Error> {
// First check if the key was removed in the overlay
if self.state.removed.contains::<IVec>(&key.into()) {
return Ok(false);
}
// Then check the cache and the main tree
if self.state.cache.contains_key::<IVec>(&key.into()) || self.tree.contains_key(key)? {
return Ok(true);
}
Ok(false)
}
/// Returns `true` if the overlay is empty.
pub fn is_empty(&self) -> bool {
// Keep a counter of all elements
let mut counter: i64 = 0;
// Add existing keys
counter += self.tree.len() as i64;
// Add new keys
counter += self.state.cache.len() as i64;
// Subtract removed keys
counter -= self.state.removed.len() as i64;
counter <= 0
}
/// Returns last key and value from the overlay or `None` if its empty,
/// based on the `Ord` implementation for `Vec<u8>`.
pub fn last(&self) -> Result<Option<(IVec, IVec)>, sled::Error> {
// If both main tree and cache are empty, return None
if self.tree.is_empty() && self.state.cache.is_empty() {
return Ok(None);
}
// Grab main tree last record
let tree_last = self.tree.last()?;
// If cache has no records, main tree last exists
if self.state.cache.is_empty() {
// We can safely unwrap here since main tree is not
// empty, as we have already checked if both main
// tree and cache are empty.
let record = tree_last.unwrap();
// Return None if its removed
if self.state.removed.contains(&record.0) {
return Ok(None);
}
// Return it
return Ok(Some((record.0.clone(), record.1.clone())));
}
// Grab cache last record.
// We can safely unwrap here as we checked if the cache is
// empty on the previous step.
let cache_last = self.state.cache.last_key_value().unwrap();
// If the main tree has a last record, compare it with the cache
// last record, and return it if it's not removed
if let Some(tree_last) = tree_last {
if cache_last.0 < &tree_last.0 && !self.state.removed.contains(&tree_last.0) {
return Ok(Some((tree_last.0.clone(), tree_last.1.clone())));
}
}
// Return the cache last record
Ok(Some((cache_last.0.clone(), cache_last.1.clone())))
}
/// Retrieve a value from the overlay if it exists.
pub fn get(&self, key: &[u8]) -> Result<Option<IVec>, sled::Error> {
// First check if the key was removed in the overlay
if self.state.removed.contains::<IVec>(&key.into()) {
return Ok(None);
}
// Then check the cache
if let Some(v) = self.state.cache.get::<IVec>(&key.into()) {
return Ok(Some(v.clone()));
}
// And finally the main tree
self.tree.get(key)
}
/// Insert a key to a new value, returning the last value if it was set.
pub fn insert(&mut self, key: &[u8], value: &[u8]) -> Result<Option<IVec>, sled::Error> {
// Insert the value into the cache. We then optionally add the previous value
// into `prev`.
let mut prev: Option<IVec> = self.state.cache.insert(key.into(), value.into());
// In case this key was previously removed from the cache, we have to
// delete it from the `removed` set.
if self.state.removed.contains::<IVec>(&key.into()) {
self.state.removed.remove(key);
// And in that case, a previous value isn't supposed to exist
return Ok(None);
}
// If cache didn't contain this key previously, and it wasn't removed
// either, then check if it's in the main tree.
if prev.is_none() {
prev = self.tree.get::<IVec>(key.into())?;
}
Ok(prev)
}
/// Delete a value, if it exists, returning the old value.
pub fn remove(&mut self, key: &[u8]) -> Result<Option<IVec>, sled::Error> {
// If it was previously removed, we can just return None
if self.state.removed.contains::<IVec>(&key.into()) {
return Ok(None);
}
// Attempt to remove from cache, and if it wasn't in the cache before,
// we have to get the previous value from the sled tree:
let mut prev: Option<IVec> = self.state.cache.remove::<IVec>(&key.into());
if prev.is_none() {
prev = self.tree.get(key)?;
}
// Previous value must existed
if prev.is_none() {
return Err(sled::Error::CollectionNotFound(key.into()));
}
// Mark the key as removed
self.state.removed.insert(key.into());
Ok(prev)
}
/// Aggregate all the current overlay changes into a [`sled::Batch`] ready for
/// further operation. If there are no changes, return `None`.
pub fn aggregate(&self) -> Option<sled::Batch> {
self.state.aggregate()
}
/// Checkpoint current cache state so we can revert to it, if needed.
pub fn checkpoint(&mut self) {
self.checkpoint = self.state.clone();
}
/// Revert to current cache state checkpoint.
pub fn revert_to_checkpoint(&mut self) {
self.state = self.checkpoint.clone();
}
/// Calculate differences from provided overlay state changes
/// sequence. This can be used when we want to keep track of
/// consecutive individual changes performed over the current
/// overlay state. If the sequence is empty, current state
/// is returned as the diff.
pub fn diff(&self, sequence: &[SledTreeOverlayState]) -> SledTreeOverlayState {
// Grab current state
let mut current = self.state.clone();
// Remove provided diffs sequence
for diff in sequence {
current.remove_diff(diff);
}
current
}
/// Add provided tree overlay state changes from our own.
pub fn add_diff(&mut self, other: &SledTreeOverlayState) {
self.state.add_diff(other)
}
/// Remove provided tree overlay state changes from our own.
pub fn remove_diff(&mut self, other: &SledTreeOverlayState) {
self.state.remove_diff(other)
}
}