1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
/* This file is part of sled-overlay
 *
 * Copyright (C) 2023 Dyne.org foundation
 *
 * This program is free software: you can redistribute it and/or modify
 * it under the terms of the GNU Affero General Public License as
 * published by the Free Software Foundation, either version 3 of the
 * License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU Affero General Public License for more details.
 *
 * You should have received a copy of the GNU Affero General Public License
 * along with this program.  If not, see <https://www.gnu.org/licenses/>.
 */

//! sled-overlay is a small crate that serves as tooling to have intermediate
//! writes to some sled database. With it, we're able to write data into an
//! in-memory cache, and only flush to the actual sled trees after we decide
//! that everything in some batch was executed correctly.
//! This gives some minimal infrastructure to be able to transparently have
//! rollback-like functionality.

use std::collections::{BTreeMap, BTreeSet};

use sled::transaction::{ConflictableTransactionError, TransactionError};
use sled::{IVec, Transactional};

/// An overlay on top of a single [`sled::Tree`] instance
pub struct SledTreeOverlay {
    /// The [`sled::Tree`] that is being overlayed.
    tree: sled::Tree,
    /// The cache is the actual overlayed data represented as a [`BTreeMap`].
    cache: BTreeMap<IVec, IVec>,
    /// In `removed`, we keep track of keys that were removed in the overlay.
    removed: BTreeSet<IVec>,
}

impl SledTreeOverlay {
    /// Instantiate a new [`SledTreeOverlay`] on top of a given [`sled::Tree`].
    pub fn new(tree: &sled::Tree) -> Self {
        Self {
            tree: tree.clone(),
            cache: BTreeMap::new(),
            removed: BTreeSet::new(),
        }
    }

    /// Returns `true` if the overlay contains a value for a specified key.
    pub fn contains_key(&self, key: &[u8]) -> Result<bool, sled::Error> {
        // First check if the key was removed in the overlay
        if self.removed.contains::<IVec>(&key.into()) {
            return Ok(false);
        }

        // Then check the cache and the main tree
        if self.cache.contains_key::<IVec>(&key.into()) || self.tree.contains_key(key)? {
            return Ok(true);
        }

        Ok(false)
    }

    /// Retrieve a value from the overlay if it exists.
    pub fn get(&self, key: &[u8]) -> Result<Option<IVec>, sled::Error> {
        // First check if the key was removed in the overlay
        if self.removed.contains::<IVec>(&key.into()) {
            return Ok(None);
        }

        // Then check the cache
        if let Some(v) = self.cache.get::<IVec>(&key.into()) {
            return Ok(Some(v.clone()));
        }

        // And finally the main tree
        self.tree.get(key)
    }

    /// Insert a key to a new value, returning the last value if it was set.
    pub fn insert(&mut self, key: &[u8], value: &[u8]) -> Result<Option<IVec>, sled::Error> {
        // Insert the value into the cache. We then optionally add the previous value
        // into `prev`.
        let mut prev: Option<IVec> = self.cache.insert(key.into(), value.into());

        // In case this key was previously removed from the cache, we have to
        // delete it from the `removed` set.
        if self.removed.contains::<IVec>(&key.into()) {
            self.removed.remove(key);
            // And in that case, a previous value isn't supposed to exist
            return Ok(None);
        }

        // If cache didn't contain this key previously, and it wasn't removed
        // either, then check if it's in the main tree.
        if prev.is_none() {
            prev = self.tree.get::<IVec>(key.into())?;
        }

        Ok(prev)
    }

    /// Delete a value, returning the old value if it existed.
    pub fn remove(&mut self, key: &[u8]) -> Result<Option<IVec>, sled::Error> {
        // If it was previously removed, we can just return None
        if self.removed.contains::<IVec>(&key.into()) {
            return Ok(None);
        }

        // Mark the key as removed
        self.removed.insert(key.into());

        // Attempt to remove from cache, and if it wasn't in the cache before,
        // we have to get the previous value from the sled tree:
        let mut prev: Option<IVec> = self.cache.remove::<IVec>(&key.into());
        if prev.is_none() {
            prev = self.tree.get(key)?;
        }

        Ok(prev)
    }

    /// Aggregate all the current overlay changes into a [`sled::Batch`] ready for
    /// further operation. If there are no changes, return `None`.
    pub fn aggregate(&self) -> Option<sled::Batch> {
        if self.cache.is_empty() && self.removed.is_empty() {
            return None;
        }

        let mut batch = sled::Batch::default();

        // This kind of first-insert-then-remove operation should be fine
        // provided it's handled correctly in the above functions.
        for (k, v) in self.cache.iter() {
            batch.insert(k, v);
        }

        for k in self.removed.iter() {
            batch.remove(k);
        }

        Some(batch)
    }
}

/// An overlay on top of an entire [`sled::Db`] which can span multiple trees
pub struct SledDbOverlay {
    /// The [`sled::Db`] that is being overlayed.
    db: sled::Db,
    /// Existing trees in `db` at the time of instantiation, so we can track newly opened trees.
    initial_tree_names: Vec<IVec>,
    /// New trees that have been opened, but didn't exist in `db` before.
    new_tree_names: Vec<IVec>,
    /// Pointers to sled trees that we have opened.
    trees: BTreeMap<IVec, sled::Tree>,
    /// Pointers to [`SledTreeOverlay`] instances that have been created.
    caches: BTreeMap<IVec, SledTreeOverlay>,
}

impl SledDbOverlay {
    /// Instantiate a new [`SledDbOverlay`] on top of a given [`sled::Db`].
    pub fn new(db: &sled::Db) -> Self {
        Self {
            db: db.clone(),
            initial_tree_names: db.tree_names(),
            new_tree_names: vec![],
            trees: BTreeMap::new(),
            caches: BTreeMap::new(),
        }
    }

    /// Create a new [`SledTreeOverlay`] on top of a given `tree_name`.
    /// This function will also open a new tree inside `db` regardless of if it has
    /// existed before, so for convenience, we also provide [`SledDbOverlay::purge_new_trees`]
    /// in case we decide we don't want to write the batches, and drop the new trees.
    pub fn open_tree(&mut self, tree_name: &[u8]) -> Result<(), sled::Error> {
        let tree_key: IVec = tree_name.into();

        if self.trees.contains_key(&tree_key) {
            // We have already opened this tree.
            return Ok(());
        }

        // Open this tree in sled. In case it hasn't existed before, we also need
        // to track it in `self.new_tree_names`.
        let tree = self.db.open_tree(&tree_key)?;
        let cache = SledTreeOverlay::new(&tree);

        if !self.initial_tree_names.contains(&tree_key) {
            self.new_tree_names.push(tree_key.clone());
        }

        self.trees.insert(tree_key.clone(), tree);
        self.caches.insert(tree_key, cache);

        Ok(())
    }

    /// Drop newly created trees from the sled database. This is a convenience
    /// function that should be used when we decide that we don't want to apply
    /// any cache changes, and we want to revert back to the initial state.
    pub fn purge_new_trees(&self) -> Result<(), sled::Error> {
        for i in &self.new_tree_names {
            self.db.drop_tree(i)?;
        }

        Ok(())
    }

    /// Fetch the cache for a given tree.
    fn get_cache(&self, tree_key: &IVec) -> Result<&SledTreeOverlay, sled::Error> {
        if let Some(v) = self.caches.get(tree_key) {
            return Ok(v);
        }

        Err(sled::Error::CollectionNotFound(tree_key.into()))
    }

    /// Fetch a mutable reference to the cache for a given tree.
    fn get_cache_mut(&mut self, tree_key: &IVec) -> Result<&mut SledTreeOverlay, sled::Error> {
        if let Some(v) = self.caches.get_mut(tree_key) {
            return Ok(v);
        }
        Err(sled::Error::CollectionNotFound(tree_key.clone()))
    }

    /// Returns `true` if the overlay contains a value for a specified key in the specified
    /// tree cache.
    pub fn contains_key(&self, tree_key: &[u8], key: &[u8]) -> Result<bool, sled::Error> {
        let cache = self.get_cache(&tree_key.into())?;
        cache.contains_key(key)
    }

    /// Retrieve a value from the overlay if it exists in the specified tree cache.
    pub fn get(&self, tree_key: &[u8], key: &[u8]) -> Result<Option<IVec>, sled::Error> {
        let cache = self.get_cache(&tree_key.into())?;
        cache.get(key)
    }

    /// Insert a key to a new value in the specified tree cache, returning the last value
    /// if it was set.
    pub fn insert(
        &mut self,
        tree_key: &[u8],
        key: &[u8],
        value: &[u8],
    ) -> Result<Option<IVec>, sled::Error> {
        let cache = self.get_cache_mut(&tree_key.into())?;
        cache.insert(key, value)
    }

    /// Delete a value in the specified tree cache, returning the old value if it existed.
    pub fn remove(&mut self, tree_key: &[u8], key: &[u8]) -> Result<Option<IVec>, sled::Error> {
        let cache = self.get_cache_mut(&tree_key.into())?;
        cache.remove(key)
    }

    /// Aggregate all the current overlay changes into [`sled::Batch`] instances and
    /// return vectors of [`sled::Tree`] and their respective [`sled::Batch`] that can
    /// be used for further operations. If there are no changes, both vectors will be empty.
    pub fn aggregate(&self) -> Result<(Vec<sled::Tree>, Vec<sled::Batch>), sled::Error> {
        let mut trees = vec![];
        let mut batches = vec![];

        for (key, tree) in &self.trees {
            let cache = self.get_cache(key)?;
            if let Some(batch) = cache.aggregate() {
                trees.push(tree.clone());
                batches.push(batch);
            }
        }

        Ok((trees, batches))
    }

    /// Ensure all new trees that have been opened exist in sled by reopening them,
    /// and atomically apply all batches on all trees as a transaction.
    /// This function **does not** perform a db flush. This should be done externally,
    /// since then there is a choice to perform either blocking or async IO.
    pub fn apply(&mut self) -> Result<(), TransactionError<sled::Error>> {
        // Ensure new trees exist
        for tree_key in &self.new_tree_names {
            let tree = self.db.open_tree(tree_key)?;
            self.trees.insert(tree_key.clone(), tree);
        }

        // Aggregate batches
        let (trees, batches) = self.aggregate()?;
        if trees.is_empty() {
            return Ok(());
        }

        // Perform an atomic transaction over all the collected trees and
        // apply the batches.
        trees.transaction(|trees| {
            for (index, tree) in trees.iter().enumerate() {
                tree.apply_batch(&batches[index])?;
            }

            Ok::<(), ConflictableTransactionError<sled::Error>>(())
        })?;

        Ok(())
    }
}