slabbin/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842
//! This allocator be straight up *slabbin'*.
//!
//! A slab allocator is in theory the perfect one, if it's applicable. It's blazingly fast and
//! avoids the issue of external fragmentation; but unlike the bump allocator it can free
//! individual allocations, and unlike the stack allocator it can free them in an arbitrary order.
//! The tradeoff here is that all allocations must have the same, fixed layout.
//!
//! The allocator in this crate is totally unsafe, and meant specifically for use cases where
//! stable addresses are required: when you allocate a slot, you get a pointer that stays valid
//! until you deallocate it (or drop the allocator). Example use cases include linked structures or
//! self-referential structures. If you don't have this requirement you may consider using [`slab`]
//! or [`typed-arena`] for example as a safe alternative.
//!
//! # Slabs
//!
//! A slab is a pre-allocated contiguous chunk of memory containing *slots*. Each slot can either
//! be free or occupied. A slab always starts out with all slots free, and new slots are given out
//! on each allocation, until they run out, at which point a new slab is allocated. Slots that are
//! deallocated are chained together in a linked list. Due to this, allocation amounts to 3
//! operations in the best case and ~8 in the worse case. Deallocation is always 3 operations.
//!
//! [`slab`]: https://crates.io/crates/slab
//! [`typed-arena`]: https://crates.io/crates/typed-arena
#![forbid(unsafe_op_in_unsafe_fn)]
#![no_std]
extern crate alloc;
use alloc::alloc::{alloc, dealloc, handle_alloc_error, Layout};
use core::{
cell::Cell,
fmt,
mem::{self, ManuallyDrop, MaybeUninit},
num::NonZeroUsize,
ptr::{self, NonNull},
};
/// An efficient slab allocator with stable addresses.
///
/// See also [the crate-level documentation] for more information about slab allocation.
///
/// # Examples
///
/// A doubly linked list that's backed by slabs:
///
/// ```
/// use slabbin::SlabAllocator;
/// use std::ptr::{self, NonNull};
///
/// struct LinkedList<T> {
/// head: Option<NonNull<Node<T>>>,
/// tail: Option<NonNull<Node<T>>>,
/// allocator: SlabAllocator<Node<T>>,
/// }
///
/// impl<T> LinkedList<T> {
/// fn new(slab_capacity: usize) -> Self {
/// LinkedList {
/// head: None,
/// tail: None,
/// allocator: SlabAllocator::new(slab_capacity),
/// }
/// }
///
/// fn push_back(&mut self, value: T) {
/// let node = self.allocator.allocate();
///
/// // SAFETY: `SlabAllocator::allocate` gives out pointers that are valid for writes (but
/// // **not** for reads).
/// unsafe { ptr::write(node.as_ptr(), Node::new(value)) };
///
/// if let Some(tail) = self.tail {
/// unsafe { (*tail.as_ptr()).next = Some(node) };
/// unsafe { (*node.as_ptr()).prev = Some(tail) };
/// } else {
/// self.head = Some(node);
/// }
///
/// self.tail = Some(node);
/// }
///
/// fn pop_back(&mut self) -> Option<T> {
/// if let Some(tail) = self.tail {
/// if let Some(prev) = unsafe { (*tail.as_ptr()).prev } {
/// unsafe { (*prev.as_ptr()).next = None };
/// self.tail = Some(prev);
/// } else {
/// self.head = None;
/// self.tail = None;
/// }
///
/// // SAFETY: We can move out of the value because the node will be deallocated.
/// let value = unsafe { ptr::read(ptr::addr_of_mut!((*tail.as_ptr()).value)) };
///
/// // SAFETY: We allocated this node, and have just removed all linkage to it so that
/// // it can't be accessed again.
/// unsafe { self.allocator.deallocate(tail) };
///
/// Some(value)
/// } else {
/// None
/// }
/// }
/// }
///
/// struct Node<T> {
/// prev: Option<NonNull<Self>>,
/// next: Option<NonNull<Self>>,
/// value: T,
/// }
///
/// impl<T> Node<T> {
/// fn new(value: T) -> Self {
/// Node {
/// prev: None,
/// next: None,
/// value,
/// }
/// }
/// }
///
/// let mut list = LinkedList::new(64);
/// list.push_back(42);
/// list.push_back(12);
/// list.push_back(69);
///
/// assert_eq!(list.pop_back(), Some(69));
/// assert_eq!(list.pop_back(), Some(12));
/// assert_eq!(list.pop_back(), Some(42));
/// assert_eq!(list.pop_back(), None);
/// ```
///
/// [the crate-level documentation]: self
pub struct SlabAllocator<T> {
free_list_head: Cell<Option<NonNull<Slot<T>>>>,
slab_list_head: Cell<Option<NonNull<Slab<T>>>>,
/// The next free slab that should be used, if any.
slab_list_next: Cell<Option<NonNull<Slab<T>>>>,
/// Points to where the free slots start in a fresh slab. If the slab list is empty then this
/// is dangling.
free_start: Cell<NonNull<Slot<T>>>,
/// Points to where the free slots end in a fresh slab. If the slab list is empty then this is
/// dangling.
free_end: Cell<NonNull<Slot<T>>>,
slab_capacity: NonZeroUsize,
}
// SAFETY: The pointers we hold are not referencing the stack or TLS or anything like that, they
// are all heap allocations, and therefore sending them to another thread is safe. Note that it is
// safe to do this regardless of whether `T` is `Send`: the allocator itself doesn't own any `T`s,
// the user does and manages their lifetime explicitly by allocating, initializing, deinitializing
// and then deallocating them. It is therefore their responsibility that a type that is `!Send`
// doesn't escape the thread it was created on (just like with any other allocator, it just so
// happens that this one is parametrized, but it doesn't have to be). Pointers are always `!Send`
// so the user would have to use unsafe code to achieve something like that in the first place.
unsafe impl<T> Send for SlabAllocator<T> {}
impl<T> SlabAllocator<T> {
/// Creates a new `SlabAllocator`.
///
/// `slab_capacity` is the number of slots in a [slab].
///
/// No memory is allocated until you call one of the `allocate` methods.
///
/// # Panics
///
/// Panics if `slab_capacity` is zero.
///
/// [slab]: self#slabs
#[inline]
#[must_use]
pub const fn new(slab_capacity: usize) -> Self {
if let Some(slab_capacity) = NonZeroUsize::new(slab_capacity) {
let dangling = NonNull::dangling();
SlabAllocator {
free_list_head: Cell::new(None),
slab_list_head: Cell::new(None),
slab_list_next: Cell::new(None),
free_start: Cell::new(dangling),
free_end: Cell::new(dangling),
slab_capacity,
}
} else {
panic!("`slab_capacity` must be non-zero");
}
}
/// Allocates a new slot for `T`. The memory referred to by the returned pointer needs to be
/// initialized before creating a reference to it.
///
/// This operation is *O*(1).
///
/// # Panics
///
/// Panics if the size of a slab exceeds `isize::MAX` bytes.
#[inline(always)]
#[must_use]
pub fn allocate(&self) -> NonNull<T> {
let ptr = if let Some(ptr) = self.allocate_fast() {
ptr
} else if let Some(ptr) = self.allocate_fast2() {
ptr
} else {
self.allocate_slow()
.unwrap_or_else(|_| handle_alloc_error(self.slab_layout()))
};
// We can safely hand the user a pointer to `T`, which is valid for writes of `T`, seeing
// as `Slot<T>` is a union with `T` as one of its fields. That means that the slot must
// have a layout that fits `T` as we used `Layout` for the layout calculation of the slots
// array.
ptr.cast::<T>()
}
/// Allocates a new slot for `T`. The memory referred to by the returned pointer needs to be
/// initialized before creating a reference to it.
///
/// This operation is *O*(1).
///
/// # Errors
///
/// Returns an error if the global allocator returns an error.
///
/// # Panics
///
/// Panics if the size of a slab exceeds `isize::MAX` bytes.
#[inline(always)]
pub fn try_allocate(&self) -> Result<NonNull<T>, AllocError> {
let ptr = if let Some(ptr) = self.allocate_fast() {
ptr
} else if let Some(ptr) = self.allocate_fast2() {
ptr
} else {
self.allocate_slow()?
};
Ok(ptr.cast::<T>())
}
#[inline(always)]
fn allocate_fast(&self) -> Option<NonNull<Slot<T>>> {
let head = self.free_list_head.get()?;
// SAFETY: Each node in the free-list is, by definition, free and therefore must have been
// initialized with the `next_free` union field when linking it into the list.
let next = unsafe { (*head.as_ptr()).next_free };
self.free_list_head.set(next);
// Make Miri comprehend that a slot must be initialized before reading it, even in cases
// where a slot is reallocated and has been initialized before.
if cfg!(miri) {
let ptr = head.as_ptr().cast::<MaybeUninit<Slot<T>>>();
// SAFETY: `MaybeUninit<Slot<T>>` and `Slot<T>` have the same layout.
unsafe { ptr.write(MaybeUninit::uninit()) };
}
// We can safely hand the user a pointer to the head of the free-list, seeing as we removed
// it from the list so that it cannot be handed out again.
Some(head)
}
#[inline(always)]
fn allocate_fast2(&self) -> Option<NonNull<Slot<T>>> {
let ptr = self.free_start.get();
if ptr < self.free_end.get() {
// SAFETY:
// * We know the offset must be in bounds of the allocated object because we just
// checked that `free_start` doesn't refer to the end of the allocated object yet:
// * `free_start` and `free_end` are initialized such that they refer to the start
// and end of the slots array respectively.
// * If the pointers haven't been initialized yet, then they are both dangling and
// equal, which means the the above condition trivially wouldn't hold.
// * This is the only place where `free_start` is incremented, always by 1.
// `free_end` is unchanging until a new slab is allocated.
// * The computed offset cannot overflow an `isize` because we used `Layout` for the
// layout calculation.
// * The computed offset cannot wrap around the address space for the same reason as
// the previous.
let free_start = unsafe { NonNull::new_unchecked(ptr.as_ptr().add(1)) };
self.free_start.set(free_start);
// We can safety hand the user a pointer to the previous free-start, as we incremented
// it such that the same slot cannot be handed out again.
Some(ptr)
} else {
None
}
}
#[cold]
fn allocate_slow(&self) -> Result<NonNull<Slot<T>>, AllocError> {
let slab = if let Some(slab) = self.slab_list_next.get() {
// SAFETY: `slab` being in the slab list means it refers to a currently allocated slab
// and that its header is properly initialized.
let next = unsafe { (*slab.as_ptr()).next };
self.slab_list_next.set(next);
slab
} else {
self.add_slab()?
};
// SAFETY: We either got an existing slab or successfully allocated a new one above, and a
// slab always includes at least the slab header, so the offset must be in range.
let slots = unsafe { NonNull::new_unchecked(ptr::addr_of_mut!((*slab.as_ptr()).slots)) };
// SAFETY:
// * We know that the offset must be in bounds of the allocated object because we allocated
// `self.slab_capacity` slots and `self.slab_capacity` is non-zero.
// * The computed offset cannot overflow an `isize` because we used `Layout` for the layout
// calculation.
// * The computed offset cannot wrap around the address space for the same reason as the
// previous.
let free_start = unsafe { NonNull::new_unchecked(slots.as_ptr().add(1)) };
// SAFETY: Same as the previous.
let free_end =
unsafe { NonNull::new_unchecked(slots.as_ptr().add(self.slab_capacity.get())) };
self.free_start.set(free_start);
self.free_end.set(free_end);
// We can safely hand the user a pointer to the first slot, seeing as we set the free-start
// to the next slot, so that the same slot cannot be handed out again.
Ok(slots)
}
fn add_slab(&self) -> Result<NonNull<Slab<T>>, AllocError> {
// SAFETY: Slabs always have a non-zero-sized layout.
let bytes = unsafe { alloc(self.slab_layout()) };
let slab = NonNull::new(bytes.cast::<Slab<T>>()).ok_or(AllocError)?;
// SAFETY: We checked that the pointer is non-null, which means allocation succeeded, and
// we've been given at least the slab header.
unsafe { (*slab.as_ptr()).next = self.slab_list_head.get() };
self.slab_list_head.set(Some(slab));
Ok(slab)
}
fn slab_layout(&self) -> Layout {
Layout::new::<Option<NonNull<Slab<T>>>>()
.extend(Layout::array::<Slot<T>>(self.slab_capacity.get()).unwrap())
.unwrap()
.0
.pad_to_align()
}
/// Deallocates the slot at the given `ptr`. The `T` is not dropped before deallocating, you
/// must do so yourself before calling this function if `T` has drop glue (unless you want to
/// leak).
///
/// This operation is *O*(1).
///
/// # Safety
///
/// `ptr` must refer to a slot that's **currently allocated** by `self`.
#[inline(always)]
pub unsafe fn deallocate(&self, ptr: NonNull<T>) {
let ptr = ptr.cast::<Slot<T>>();
if cfg!(debug_assertions) {
// TODO: Replace with `<*mut Slot<T>>::addr` once it's stabilized.
// SAFETY: `*mut Slot<T>` and `usize` have the same layout.
#[allow(clippy::transmutes_expressible_as_ptr_casts)]
let addr = unsafe { mem::transmute::<*mut Slot<T>, usize>(ptr.as_ptr()) };
// TODO: Replace with `<*mut Slot<T>>::is_aligned` once it's stabilized.
if addr & (mem::align_of::<Slot<T>>() - 1) != 0 {
panic!("attempted to deallocate a slot that does not belong to this allocator");
}
let mut head = self.slab_list_head.get();
loop {
let slab = if let Some(slab) = head {
slab
} else {
panic!("attempted to deallocate a slot that does not belong to this allocator");
};
// SAFETY: `slab` being in the slab list means it refers to a currently allocated
// slab and that contains at least the header, so the offset must be in range.
let slots_start = unsafe { ptr::addr_of_mut!((*slab.as_ptr()).slots) };
// SAFETY:
// * We know that the offset must be in bouds of the allocated object because we
// allocated `slab_capacity` slots.
// * The computed offset cannot overflow an `isize` because we used `Layout` for
// the layout calculation.
// * The computed offset cannot wrap around the address space for the same reason
// as the previous.
let slots_end = unsafe { slots_start.add(self.slab_capacity.get()) };
if (slots_start..slots_end).contains(&ptr.as_ptr()) {
break;
}
// SAFETY: `slab` being in the slab list means it refers to a currently allocated
// slab and that its header is properly initialized.
head = unsafe { (*slab.as_ptr()).next };
}
}
// SAFETY: The caller must ensure that `ptr` refers to a currently allocated slot, meaning
// that `ptr` was derived from one of our slabs using `allocate`, making it a valid ponter.
// We can overwrite whatever was in the slot before, because nothing must access a pointer
// after its memory block has been deallocated (as that would constitute a Use-After-Free).
// In our case we reuse the memory for the free-list linkage.
unsafe { (*ptr.as_ptr()).next_free = self.free_list_head.get() };
self.free_list_head.set(Some(ptr));
}
/// Resets the allocator, deallocating all currently allocated slots at once.
///
/// This operation is *O*(1).
///
/// # Safety
///
/// This function semantically behaves as if [`deallocate`] was called for every currently
/// allocated slot.
///
/// [`deallocate`]: Self::deallocate
pub unsafe fn reset(&self) {
self.free_list_head.set(None);
self.slab_list_next.set(self.slab_list_head.get());
let dangling = NonNull::dangling();
self.free_start.set(dangling);
self.free_end.set(dangling);
}
fn slab_count(&self) -> usize {
let mut head = self.slab_list_head.get();
let mut count = 0;
while let Some(slab) = head {
// SAFETY: `slab` being in the slab list means it refers to a currently allocated slab
// and that its header is properly initialized.
head = unsafe { (*slab.as_ptr()).next };
count += 1;
}
count
}
}
impl<T> fmt::Debug for SlabAllocator<T> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.debug_struct("SlabAllocator")
.field("slab_count", &self.slab_count())
.field("slab_capacity", &self.slab_capacity)
.finish()
}
}
impl<T> Drop for SlabAllocator<T> {
fn drop(&mut self) {
let slab_layout = self.slab_layout();
while let Some(slab) = self.slab_list_head.get() {
// SAFETY: `slab` being in the slab list means it refers to a currently allocated slab
// and that its header is properly initialized.
*self.slab_list_head.get_mut() = unsafe { (*slab.as_ptr()).next };
// SAFETY:
// * `slab` being in the slab list means it refers to a currently allocated slab.
// * `self.slab_layout()` returns the same layout that was used to allocate the slab.
unsafe { dealloc(slab.as_ptr().cast(), slab_layout) };
}
}
}
#[repr(C)]
struct Slab<T> {
next: Option<NonNull<Self>>,
/// The actual field type is `[Slot<T>]` except that we want a thin pointer.
slots: Slot<T>,
}
#[repr(C)]
union Slot<T> {
next_free: Option<NonNull<Self>>,
value: ManuallyDrop<T>,
}
/// Indicates that allocating memory using the global allocator failed.
#[derive(Clone, Copy, Debug, PartialEq, Eq)]
pub struct AllocError;
impl fmt::Display for AllocError {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.write_str("memory allocation failed")
}
}
#[cfg(test)]
mod tests {
use super::*;
use core::mem;
#[test]
fn basic_usage1() {
let allocator = SlabAllocator::<i32>::new(2);
let mut x = allocator.allocate();
unsafe { x.as_ptr().write(69) };
let mut y = allocator.allocate();
unsafe { y.as_ptr().write(42) };
assert_eq!(allocator.slab_count(), 1);
mem::swap(unsafe { x.as_mut() }, unsafe { y.as_mut() });
unsafe { allocator.deallocate(x) };
let mut x2 = allocator.allocate();
unsafe { x2.as_ptr().write(12) };
assert_eq!(allocator.slab_count(), 1);
mem::swap(unsafe { y.as_mut() }, unsafe { x2.as_mut() });
unsafe { allocator.deallocate(y) };
unsafe { allocator.deallocate(x2) };
}
#[test]
fn basic_usage2() {
let allocator = SlabAllocator::<i32>::new(1);
let mut x = allocator.allocate();
unsafe { x.as_ptr().write(1) };
let mut y = allocator.allocate();
unsafe { y.as_ptr().write(2) };
let mut z = allocator.allocate();
unsafe { z.as_ptr().write(3) };
assert_eq!(allocator.slab_count(), 3);
mem::swap(unsafe { x.as_mut() }, unsafe { y.as_mut() });
mem::swap(unsafe { y.as_mut() }, unsafe { z.as_mut() });
mem::swap(unsafe { z.as_mut() }, unsafe { x.as_mut() });
unsafe { allocator.deallocate(y) };
let mut y2 = allocator.allocate();
unsafe { y2.as_ptr().write(20) };
assert_eq!(allocator.slab_count(), 3);
mem::swap(unsafe { x.as_mut() }, unsafe { y2.as_mut() });
unsafe { allocator.deallocate(x) };
unsafe { allocator.deallocate(z) };
let mut x2 = allocator.allocate();
unsafe { x2.as_ptr().write(10) };
mem::swap(unsafe { y2.as_mut() }, unsafe { x2.as_mut() });
let mut z2 = allocator.allocate();
unsafe { z2.as_ptr().write(30) };
assert_eq!(allocator.slab_count(), 3);
mem::swap(unsafe { x2.as_mut() }, unsafe { z2.as_mut() });
unsafe { allocator.deallocate(x2) };
mem::swap(unsafe { z2.as_mut() }, unsafe { y2.as_mut() });
unsafe { allocator.deallocate(y2) };
unsafe { allocator.deallocate(z2) };
}
#[test]
fn basic_usage3() {
let allocator = SlabAllocator::<i32>::new(2);
let mut x = allocator.allocate();
unsafe { x.as_ptr().write(1) };
let mut y = allocator.allocate();
unsafe { y.as_ptr().write(2) };
assert_eq!(allocator.slab_count(), 1);
mem::swap(unsafe { x.as_mut() }, unsafe { y.as_mut() });
let z = allocator.allocate();
unsafe { z.as_ptr().write(3) };
assert_eq!(allocator.slab_count(), 2);
unsafe { allocator.deallocate(x) };
unsafe { allocator.deallocate(z) };
let mut z2 = allocator.allocate();
unsafe { z2.as_ptr().write(30) };
let mut x2 = allocator.allocate();
unsafe { x2.as_ptr().write(10) };
assert_eq!(allocator.slab_count(), 2);
mem::swap(unsafe { x2.as_mut() }, unsafe { z2.as_mut() });
unsafe { allocator.deallocate(x2) };
unsafe { allocator.deallocate(y) };
unsafe { allocator.deallocate(z2) };
}
#[test]
fn reusing_slots1() {
let allocator = SlabAllocator::<i32>::new(2);
let x = allocator.allocate();
let y = allocator.allocate();
unsafe { allocator.deallocate(y) };
let y2 = allocator.allocate();
assert_eq!(y2, y);
unsafe { allocator.deallocate(x) };
let x2 = allocator.allocate();
assert_eq!(x2, x);
unsafe { allocator.deallocate(y2) };
unsafe { allocator.deallocate(x2) };
}
#[test]
fn reusing_slots2() {
let allocator = SlabAllocator::<i32>::new(1);
let x = allocator.allocate();
unsafe { allocator.deallocate(x) };
let x2 = allocator.allocate();
assert_eq!(x, x2);
let y = allocator.allocate();
let z = allocator.allocate();
unsafe { allocator.deallocate(y) };
unsafe { allocator.deallocate(x2) };
let x3 = allocator.allocate();
let y2 = allocator.allocate();
assert_eq!(x3, x2);
assert_eq!(y2, y);
unsafe { allocator.deallocate(x3) };
unsafe { allocator.deallocate(y2) };
unsafe { allocator.deallocate(z) };
}
#[test]
fn reusing_slots3() {
let allocator = SlabAllocator::<i32>::new(2);
let x = allocator.allocate();
let y = allocator.allocate();
unsafe { allocator.deallocate(x) };
unsafe { allocator.deallocate(y) };
let y2 = allocator.allocate();
let x2 = allocator.allocate();
let z = allocator.allocate();
assert_eq!(x2, x);
assert_eq!(y2, y);
unsafe { allocator.deallocate(x2) };
unsafe { allocator.deallocate(z) };
unsafe { allocator.deallocate(y2) };
let y3 = allocator.allocate();
let z2 = allocator.allocate();
let x3 = allocator.allocate();
assert_eq!(y3, y2);
assert_eq!(z2, z);
assert_eq!(x3, x2);
unsafe { allocator.deallocate(x3) };
unsafe { allocator.deallocate(y3) };
unsafe { allocator.deallocate(z2) };
}
#[test]
fn reusing_slots4() {
let allocator = SlabAllocator::<i32>::new(2);
let x = allocator.allocate();
let y = allocator.allocate();
unsafe { allocator.deallocate(y) };
let y2 = allocator.allocate();
assert_eq!(y2, y);
unsafe { allocator.reset() };
let x2 = allocator.allocate();
let y3 = allocator.allocate();
assert_eq!(x2, x);
assert_eq!(y3, y2);
unsafe { allocator.deallocate(y3) };
unsafe { allocator.deallocate(x2) };
}
#[test]
fn reusing_slots5() {
let allocator = SlabAllocator::<i32>::new(1);
let x = allocator.allocate();
unsafe { allocator.deallocate(x) };
let x2 = allocator.allocate();
assert_eq!(x, x2);
let y = allocator.allocate();
let z = allocator.allocate();
unsafe { allocator.reset() };
let z2 = allocator.allocate();
let y2 = allocator.allocate();
assert_eq!(z2, z);
assert_eq!(y2, y);
unsafe { allocator.deallocate(z2) };
unsafe { allocator.deallocate(y2) };
}
#[test]
fn reusing_slots6() {
let allocator = SlabAllocator::<i32>::new(2);
let x = allocator.allocate();
let y = allocator.allocate();
unsafe { allocator.reset() };
let x2 = allocator.allocate();
let y2 = allocator.allocate();
let z = allocator.allocate();
assert_eq!(x2, x);
assert_eq!(y2, y);
unsafe { allocator.deallocate(x2) };
unsafe { allocator.deallocate(z) };
unsafe { allocator.deallocate(y2) };
unsafe { allocator.reset() };
let z2 = allocator.allocate();
let _ = allocator.allocate();
let x3 = allocator.allocate();
let y3 = allocator.allocate();
assert_eq!(z2, z);
assert_eq!(x3, x2);
assert_eq!(y3, y2);
unsafe { allocator.reset() };
}
#[test]
fn same_slab() {
const MAX_DIFF: usize = 2 * mem::size_of::<Slot<i32>>();
let allocator = SlabAllocator::<i32>::new(3);
let x = allocator.allocate();
let y = allocator.allocate();
let z = allocator.allocate();
assert!((x.as_ptr() as usize).abs_diff(y.as_ptr() as usize) <= MAX_DIFF);
assert!((y.as_ptr() as usize).abs_diff(z.as_ptr() as usize) <= MAX_DIFF);
assert!((z.as_ptr() as usize).abs_diff(x.as_ptr() as usize) <= MAX_DIFF);
}
#[test]
fn different_slabs() {
const MIN_DIFF: usize = mem::size_of::<Slab<i32>>();
let allocator = SlabAllocator::<i32>::new(1);
let x = allocator.allocate();
let y = allocator.allocate();
let z = allocator.allocate();
assert!((x.as_ptr() as usize).abs_diff(y.as_ptr() as usize) >= MIN_DIFF);
assert!((y.as_ptr() as usize).abs_diff(z.as_ptr() as usize) >= MIN_DIFF);
assert!((z.as_ptr() as usize).abs_diff(x.as_ptr() as usize) >= MIN_DIFF);
}
#[test]
#[should_panic]
fn zero_slab_capacity() {
let _ = SlabAllocator::<()>::new(0);
}
#[cfg(debug_assertions)]
#[test]
#[should_panic]
fn unaligned_ptr() {
let allocator = SlabAllocator::<i32>::new(1);
let x = allocator.allocate();
unsafe {
allocator
.deallocate(NonNull::new(x.as_ptr().cast::<u8>().add(1).cast::<i32>()).unwrap())
};
}
#[cfg(debug_assertions)]
#[test]
#[should_panic]
fn foreign_ptr() {
let allocator = SlabAllocator::<i32>::new(1);
let mut x = 69;
unsafe { allocator.deallocate((&mut x).into()) };
}
}