sklears_utils/
gpu_computing.rs

1//! GPU computing integration utilities
2//!
3//! This module provides utilities for GPU computing integration including device detection,
4//! memory management, kernel execution, and performance optimization for ML workloads.
5
6use std::collections::HashMap;
7use std::sync::{Arc, RwLock};
8use std::time::Instant;
9
10/// GPU device information
11#[derive(Debug, Clone)]
12pub struct GpuDevice {
13    pub id: u32,
14    pub name: String,
15    pub memory_total: u64,
16    pub memory_available: u64,
17    pub compute_capability: (u32, u32),
18    pub cores: u32,
19    pub clock_rate: u32,
20    pub memory_bandwidth: u64,
21    pub is_integrated: bool,
22}
23
24/// GPU memory allocation tracking
25#[derive(Debug, Clone)]
26pub struct GpuMemoryAllocation {
27    pub ptr: u64,
28    pub size: u64,
29    pub device_id: u32,
30    pub allocated_at: Instant,
31    pub name: String,
32}
33
34/// GPU kernel execution info
35#[derive(Debug, Clone)]
36pub struct GpuKernelExecution {
37    pub kernel_name: String,
38    pub device_id: u32,
39    pub grid_size: (u32, u32, u32),
40    pub block_size: (u32, u32, u32),
41    pub shared_memory: u32,
42    pub execution_time: f64,
43    pub parameters: HashMap<String, String>,
44}
45
46/// GPU computing utilities
47#[derive(Debug)]
48pub struct GpuUtils {
49    devices: Vec<GpuDevice>,
50    allocations: Arc<RwLock<HashMap<u64, GpuMemoryAllocation>>>,
51    kernel_executions: Arc<RwLock<Vec<GpuKernelExecution>>>,
52    performance_counters: Arc<RwLock<HashMap<String, f64>>>,
53}
54
55impl GpuUtils {
56    /// Create new GPU utilities
57    pub fn new() -> Self {
58        Self {
59            devices: Vec::new(),
60            allocations: Arc::new(RwLock::new(HashMap::new())),
61            kernel_executions: Arc::new(RwLock::new(Vec::new())),
62            performance_counters: Arc::new(RwLock::new(HashMap::new())),
63        }
64    }
65
66    /// Initialize GPU devices
67    pub fn init_devices(&mut self) -> Result<(), GpuError> {
68        // Mock device initialization (in real implementation, this would use CUDA/OpenCL)
69        let mock_devices = vec![
70            GpuDevice {
71                id: 0,
72                name: "NVIDIA GeForce RTX 3080".to_string(),
73                memory_total: 10_737_418_240,    // 10 GB
74                memory_available: 9_663_676_416, // 9 GB
75                compute_capability: (8, 6),
76                cores: 8704,
77                clock_rate: 1710,
78                memory_bandwidth: 760_000_000_000, // 760 GB/s
79                is_integrated: false,
80            },
81            GpuDevice {
82                id: 1,
83                name: "Intel UHD Graphics 770".to_string(),
84                memory_total: 2_147_483_648,     // 2 GB
85                memory_available: 1_610_612_736, // 1.5 GB
86                compute_capability: (0, 0),
87                cores: 256,
88                clock_rate: 1550,
89                memory_bandwidth: 68_000_000_000, // 68 GB/s
90                is_integrated: true,
91            },
92        ];
93
94        self.devices = mock_devices;
95        Ok(())
96    }
97
98    /// Get available GPU devices
99    pub fn get_devices(&self) -> &[GpuDevice] {
100        &self.devices
101    }
102
103    /// Get device by ID
104    pub fn get_device(&self, id: u32) -> Option<&GpuDevice> {
105        self.devices.iter().find(|d| d.id == id)
106    }
107
108    /// Get best device for ML workloads
109    pub fn get_best_device(&self) -> Option<&GpuDevice> {
110        self.devices
111            .iter()
112            .filter(|d| !d.is_integrated)
113            .max_by_key(|d| d.cores * d.clock_rate)
114            .or_else(|| self.devices.first())
115    }
116
117    /// Allocate GPU memory
118    pub fn allocate_memory(&self, size: u64, device_id: u32, name: &str) -> Result<u64, GpuError> {
119        let device = self.get_device(device_id).ok_or(GpuError::DeviceNotFound)?;
120
121        if size > device.memory_available {
122            return Err(GpuError::OutOfMemory);
123        }
124
125        // Mock allocation (in real implementation, this would use CUDA/OpenCL)
126        let ptr = (std::ptr::null::<u8>() as u64) + size; // Mock pointer
127        let allocation = GpuMemoryAllocation {
128            ptr,
129            size,
130            device_id,
131            allocated_at: Instant::now(),
132            name: name.to_string(),
133        };
134
135        self.allocations.write().unwrap().insert(ptr, allocation);
136        Ok(ptr)
137    }
138
139    /// Free GPU memory
140    pub fn free_memory(&self, ptr: u64) -> Result<(), GpuError> {
141        let mut allocations = self.allocations.write().unwrap();
142        allocations.remove(&ptr).ok_or(GpuError::InvalidPointer)?;
143        Ok(())
144    }
145
146    /// Get memory usage statistics
147    pub fn get_memory_stats(&self) -> HashMap<u32, MemoryStats> {
148        let allocations = self.allocations.read().unwrap();
149        let mut stats = HashMap::new();
150
151        for device in &self.devices {
152            let device_allocations: Vec<_> = allocations
153                .values()
154                .filter(|a| a.device_id == device.id)
155                .collect();
156
157            let total_allocated = device_allocations.iter().map(|a| a.size).sum();
158            let num_allocations = device_allocations.len();
159
160            stats.insert(
161                device.id,
162                MemoryStats {
163                    total_memory: device.memory_total,
164                    available_memory: device.memory_available,
165                    allocated_memory: total_allocated,
166                    free_memory: device.memory_available - total_allocated,
167                    num_allocations,
168                    largest_allocation: device_allocations
169                        .iter()
170                        .map(|a| a.size)
171                        .max()
172                        .unwrap_or(0),
173                    fragmentation_ratio: if num_allocations > 0 {
174                        (num_allocations as f64) / (total_allocated as f64 / 1024.0)
175                    } else {
176                        0.0
177                    },
178                },
179            );
180        }
181
182        stats
183    }
184
185    /// Execute GPU kernel
186    pub fn execute_kernel(&self, kernel: &GpuKernelInfo) -> Result<GpuKernelExecution, GpuError> {
187        let _device = self
188            .get_device(kernel.device_id)
189            .ok_or(GpuError::DeviceNotFound)?;
190
191        let start_time = Instant::now();
192
193        // Mock kernel execution (in real implementation, this would use CUDA/OpenCL)
194        std::thread::sleep(std::time::Duration::from_millis(1));
195
196        let execution_time = start_time.elapsed().as_secs_f64() * 1000.0; // ms
197
198        let execution = GpuKernelExecution {
199            kernel_name: kernel.name.clone(),
200            device_id: kernel.device_id,
201            grid_size: kernel.grid_size,
202            block_size: kernel.block_size,
203            shared_memory: kernel.shared_memory,
204            execution_time,
205            parameters: kernel.parameters.clone(),
206        };
207
208        self.kernel_executions
209            .write()
210            .unwrap()
211            .push(execution.clone());
212        Ok(execution)
213    }
214
215    /// Get kernel execution history
216    pub fn get_kernel_history(&self) -> Vec<GpuKernelExecution> {
217        self.kernel_executions.read().unwrap().clone()
218    }
219
220    /// Get performance counters
221    pub fn get_performance_counters(&self) -> HashMap<String, f64> {
222        self.performance_counters.read().unwrap().clone()
223    }
224
225    /// Update performance counter
226    pub fn update_counter(&self, name: &str, value: f64) {
227        self.performance_counters
228            .write()
229            .unwrap()
230            .insert(name.to_string(), value);
231    }
232
233    /// Get throughput estimate for array operations
234    pub fn estimate_throughput(&self, device_id: u32, array_size: usize, operation: &str) -> f64 {
235        let device = match self.get_device(device_id) {
236            Some(d) => d,
237            None => return 0.0,
238        };
239
240        let base_throughput = match operation {
241            "add" | "subtract" | "multiply" => device.memory_bandwidth as f64 * 0.8,
242            "divide" | "sqrt" | "exp" | "log" => device.memory_bandwidth as f64 * 0.6,
243            "matrix_multiply" => (device.cores as f64 * device.clock_rate as f64 * 1e6) * 0.5,
244            "fft" => (device.cores as f64 * device.clock_rate as f64 * 1e6) * 0.3,
245            _ => device.memory_bandwidth as f64 * 0.5,
246        };
247
248        let array_factor = (array_size as f64).log2() / 20.0; // Efficiency decreases with size
249        base_throughput * (1.0 - array_factor.min(0.5))
250    }
251
252    /// Check if operation should use GPU
253    pub fn should_use_gpu(&self, array_size: usize, operation: &str) -> bool {
254        if self.devices.is_empty() {
255            return false;
256        }
257
258        let min_size = match operation {
259            "add" | "subtract" | "multiply" | "divide" => 1000,
260            "matrix_multiply" => 100,
261            "fft" | "conv" => 512,
262            _ => 1000,
263        };
264
265        array_size >= min_size
266    }
267
268    /// Get GPU utilization
269    pub fn get_utilization(&self) -> HashMap<u32, f64> {
270        let mut utilization = HashMap::new();
271
272        for device in &self.devices {
273            // Mock utilization calculation
274            let recent_executions = self
275                .kernel_executions
276                .read()
277                .unwrap()
278                .iter()
279                .filter(|e| e.device_id == device.id)
280                .filter(|e| e.execution_time > 0.0)
281                .count();
282
283            let util = (recent_executions as f64 / 10.0).min(1.0);
284            utilization.insert(device.id, util);
285        }
286
287        utilization
288    }
289
290    /// Cleanup all resources
291    pub fn cleanup(&self) -> Result<(), GpuError> {
292        let allocations = self.allocations.read().unwrap();
293        if !allocations.is_empty() {
294            return Err(GpuError::ResourcesNotFreed);
295        }
296
297        // Clear history
298        self.kernel_executions.write().unwrap().clear();
299        self.performance_counters.write().unwrap().clear();
300
301        Ok(())
302    }
303}
304
305/// GPU kernel execution information
306#[derive(Debug, Clone)]
307pub struct GpuKernelInfo {
308    pub name: String,
309    pub device_id: u32,
310    pub grid_size: (u32, u32, u32),
311    pub block_size: (u32, u32, u32),
312    pub shared_memory: u32,
313    pub parameters: HashMap<String, String>,
314}
315
316/// GPU memory usage statistics
317#[derive(Debug, Clone)]
318pub struct MemoryStats {
319    pub total_memory: u64,
320    pub available_memory: u64,
321    pub allocated_memory: u64,
322    pub free_memory: u64,
323    pub num_allocations: usize,
324    pub largest_allocation: u64,
325    pub fragmentation_ratio: f64,
326}
327
328/// GPU array operations
329pub struct GpuArrayOps;
330
331impl GpuArrayOps {
332    /// Add two arrays on GPU
333    pub fn add_arrays(a: &[f32], b: &[f32], _device_id: u32) -> Result<Vec<f32>, GpuError> {
334        if a.len() != b.len() {
335            return Err(GpuError::ShapeMismatch);
336        }
337
338        // Mock GPU computation
339        let result: Vec<f32> = a.iter().zip(b.iter()).map(|(x, y)| x + y).collect();
340        Ok(result)
341    }
342
343    /// Multiply two arrays on GPU
344    pub fn multiply_arrays(a: &[f32], b: &[f32], _device_id: u32) -> Result<Vec<f32>, GpuError> {
345        if a.len() != b.len() {
346            return Err(GpuError::ShapeMismatch);
347        }
348
349        // Mock GPU computation
350        let result: Vec<f32> = a.iter().zip(b.iter()).map(|(x, y)| x * y).collect();
351        Ok(result)
352    }
353
354    /// Matrix multiplication on GPU
355    pub fn matrix_multiply(
356        a: &[f32],
357        b: &[f32],
358        m: usize,
359        n: usize,
360        k: usize,
361        _device_id: u32,
362    ) -> Result<Vec<f32>, GpuError> {
363        if a.len() != m * k || b.len() != k * n {
364            return Err(GpuError::ShapeMismatch);
365        }
366
367        // Mock GPU computation
368        let mut result = vec![0.0f32; m * n];
369
370        for i in 0..m {
371            for j in 0..n {
372                for l in 0..k {
373                    result[i * n + j] += a[i * k + l] * b[l * n + j];
374                }
375            }
376        }
377
378        Ok(result)
379    }
380
381    /// Apply activation function on GPU
382    pub fn apply_activation(
383        input: &[f32],
384        activation: ActivationFunction,
385        _device_id: u32,
386    ) -> Result<Vec<f32>, GpuError> {
387        // Mock GPU computation
388        let result: Vec<f32> = input
389            .iter()
390            .map(|&x| {
391                match activation {
392                    ActivationFunction::ReLU => x.max(0.0),
393                    ActivationFunction::Sigmoid => 1.0 / (1.0 + (-x).exp()),
394                    ActivationFunction::Tanh => x.tanh(),
395                    ActivationFunction::Softmax => x.exp(), // Simplified, would need proper normalization
396                }
397            })
398            .collect();
399
400        Ok(result)
401    }
402
403    /// Compute reduction on GPU
404    pub fn reduce_sum(input: &[f32], _device_id: u32) -> Result<f32, GpuError> {
405        // Mock GPU computation
406        Ok(input.iter().sum())
407    }
408
409    /// Compute reduction max on GPU
410    pub fn reduce_max(input: &[f32], _device_id: u32) -> Result<f32, GpuError> {
411        // Mock GPU computation
412        input
413            .iter()
414            .fold(f32::NEG_INFINITY, |a, &b| a.max(b))
415            .is_finite()
416            .then_some(input.iter().fold(f32::NEG_INFINITY, |a, &b| a.max(b)))
417            .ok_or(GpuError::ComputationError)
418    }
419}
420
421/// GPU activation functions
422#[derive(Debug, Clone, Copy)]
423pub enum ActivationFunction {
424    ReLU,
425    Sigmoid,
426    Tanh,
427    Softmax,
428}
429
430/// GPU computing errors
431#[derive(Debug, thiserror::Error)]
432pub enum GpuError {
433    #[error("GPU device not found")]
434    DeviceNotFound,
435    #[error("Out of GPU memory")]
436    OutOfMemory,
437    #[error("Invalid GPU pointer")]
438    InvalidPointer,
439    #[error("GPU computation error")]
440    ComputationError,
441    #[error("Array shape mismatch")]
442    ShapeMismatch,
443    #[error("GPU resources not freed")]
444    ResourcesNotFreed,
445    #[error("GPU initialization failed: {0}")]
446    InitializationFailed(String),
447}
448
449/// GPU performance profiler
450#[derive(Debug)]
451pub struct GpuProfiler {
452    kernel_times: HashMap<String, Vec<f64>>,
453    memory_transfers: Vec<(Instant, u64, String)>,
454    device_utilization: HashMap<u32, Vec<(Instant, f64)>>,
455}
456
457impl GpuProfiler {
458    /// Create new GPU profiler
459    pub fn new() -> Self {
460        Self {
461            kernel_times: HashMap::new(),
462            memory_transfers: Vec::new(),
463            device_utilization: HashMap::new(),
464        }
465    }
466
467    /// Record kernel execution time
468    pub fn record_kernel_time(&mut self, kernel_name: &str, time_ms: f64) {
469        self.kernel_times
470            .entry(kernel_name.to_string())
471            .or_default()
472            .push(time_ms);
473    }
474
475    /// Record memory transfer
476    pub fn record_memory_transfer(&mut self, size: u64, direction: &str) {
477        self.memory_transfers
478            .push((Instant::now(), size, direction.to_string()));
479    }
480
481    /// Record device utilization
482    pub fn record_utilization(&mut self, device_id: u32, utilization: f64) {
483        self.device_utilization
484            .entry(device_id)
485            .or_default()
486            .push((Instant::now(), utilization));
487    }
488
489    /// Get kernel statistics
490    pub fn get_kernel_stats(&self) -> HashMap<String, KernelStats> {
491        let mut stats = HashMap::new();
492
493        for (kernel_name, times) in &self.kernel_times {
494            let count = times.len();
495            let total_time: f64 = times.iter().sum();
496            let avg_time = total_time / count as f64;
497            let min_time = times.iter().fold(f64::INFINITY, |a, &b| a.min(b));
498            let max_time = times.iter().fold(f64::NEG_INFINITY, |a, &b| a.max(b));
499
500            stats.insert(
501                kernel_name.clone(),
502                KernelStats {
503                    count,
504                    total_time,
505                    avg_time,
506                    min_time,
507                    max_time,
508                },
509            );
510        }
511
512        stats
513    }
514
515    /// Get memory transfer statistics
516    pub fn get_memory_transfer_stats(&self) -> MemoryTransferStats {
517        let total_transfers = self.memory_transfers.len();
518        let total_bytes: u64 = self.memory_transfers.iter().map(|(_, size, _)| size).sum();
519
520        let host_to_device = self
521            .memory_transfers
522            .iter()
523            .filter(|(_, _, dir)| dir == "host_to_device")
524            .count();
525
526        let device_to_host = self
527            .memory_transfers
528            .iter()
529            .filter(|(_, _, dir)| dir == "device_to_host")
530            .count();
531
532        MemoryTransferStats {
533            total_transfers,
534            total_bytes,
535            host_to_device_transfers: host_to_device,
536            device_to_host_transfers: device_to_host,
537        }
538    }
539
540    /// Clear all profiling data
541    pub fn clear(&mut self) {
542        self.kernel_times.clear();
543        self.memory_transfers.clear();
544        self.device_utilization.clear();
545    }
546}
547
548/// Kernel execution statistics
549#[derive(Debug, Clone)]
550pub struct KernelStats {
551    pub count: usize,
552    pub total_time: f64,
553    pub avg_time: f64,
554    pub min_time: f64,
555    pub max_time: f64,
556}
557
558/// Memory transfer statistics
559#[derive(Debug, Clone)]
560pub struct MemoryTransferStats {
561    pub total_transfers: usize,
562    pub total_bytes: u64,
563    pub host_to_device_transfers: usize,
564    pub device_to_host_transfers: usize,
565}
566
567impl Default for GpuUtils {
568    fn default() -> Self {
569        Self::new()
570    }
571}
572
573impl Default for GpuProfiler {
574    fn default() -> Self {
575        Self::new()
576    }
577}
578
579/// Multi-GPU coordinator for distributed computing
580pub struct MultiGpuCoordinator {
581    gpus: HashMap<u32, GpuUtils>,
582    load_balancer: LoadBalancer,
583    #[allow(dead_code)]
584    communication_topology: CommunicationTopology,
585    #[allow(dead_code)]
586    synchronization_barriers: Vec<SynchronizationBarrier>,
587}
588
589impl Default for MultiGpuCoordinator {
590    fn default() -> Self {
591        Self::new()
592    }
593}
594
595impl MultiGpuCoordinator {
596    /// Create new multi-GPU coordinator
597    pub fn new() -> Self {
598        Self {
599            gpus: HashMap::new(),
600            load_balancer: LoadBalancer::new(),
601            communication_topology: CommunicationTopology::Ring,
602            synchronization_barriers: Vec::new(),
603        }
604    }
605
606    /// Initialize all available GPUs
607    pub fn init_all_gpus(&mut self) -> Result<(), GpuError> {
608        for gpu_id in 0..8 {
609            // Check up to 8 GPUs
610            let mut gpu = GpuUtils::new();
611            if gpu.init_devices().is_ok() && !gpu.devices.is_empty() {
612                self.gpus.insert(gpu_id, gpu);
613            }
614        }
615
616        if self.gpus.is_empty() {
617            return Err(GpuError::InitializationFailed("No GPUs found".to_string()));
618        }
619
620        Ok(())
621    }
622
623    /// Get optimal GPU assignment for workload
624    pub fn get_optimal_assignment(&self, workload: &DistributedWorkload) -> Vec<GpuAssignment> {
625        self.load_balancer.assign_workload(workload, &self.gpus)
626    }
627
628    /// Execute distributed operation across multiple GPUs
629    pub fn execute_distributed(
630        &self,
631        operation: &DistributedOperation,
632    ) -> Result<DistributedResult, GpuError> {
633        let assignments = self.get_optimal_assignment(&operation.workload);
634        let mut results = Vec::new();
635
636        // Execute on each GPU
637        for assignment in assignments {
638            let gpu = self
639                .gpus
640                .get(&assignment.gpu_id)
641                .ok_or(GpuError::DeviceNotFound)?;
642
643            let kernel_info = GpuKernelInfo {
644                name: operation.kernel_name.clone(),
645                device_id: assignment.gpu_id,
646                grid_size: assignment.grid_size,
647                block_size: assignment.block_size,
648                shared_memory: assignment.shared_memory,
649                parameters: assignment.parameters.clone(),
650            };
651
652            let execution = gpu.execute_kernel(&kernel_info)?;
653            results.push(execution);
654        }
655
656        // Aggregate results
657        let total_time: f64 = results.iter().map(|e| e.execution_time).sum();
658        Ok(DistributedResult {
659            executions: results,
660            total_time,
661            communication_overhead: 0.0, // Mock value
662        })
663    }
664
665    /// Synchronize all GPUs
666    pub fn synchronize_all(&self) -> Result<(), GpuError> {
667        // Mock synchronization
668        std::thread::sleep(std::time::Duration::from_millis(1));
669        Ok(())
670    }
671
672    /// Get cluster-wide memory statistics
673    pub fn get_cluster_memory_stats(&self) -> ClusterMemoryStats {
674        let mut total_memory = 0;
675        let mut total_allocated = 0;
676        let mut device_stats = HashMap::new();
677
678        for (gpu_id, gpu) in &self.gpus {
679            let stats = gpu.get_memory_stats();
680            if let Some(stat) = stats.get(gpu_id) {
681                total_memory += stat.total_memory;
682                total_allocated += stat.allocated_memory;
683                device_stats.insert(*gpu_id, stat.clone());
684            }
685        }
686
687        ClusterMemoryStats {
688            total_memory,
689            total_allocated,
690            total_free: total_memory - total_allocated,
691            num_devices: self.gpus.len(),
692            device_stats,
693        }
694    }
695}
696
697/// GPU memory pool for efficient allocation
698pub struct GpuMemoryPool {
699    pools: HashMap<u32, Vec<MemoryBlock>>,
700    #[allow(dead_code)]
701    allocation_strategy: AllocationStrategy,
702    #[allow(dead_code)]
703    fragmentation_threshold: f64,
704}
705
706impl GpuMemoryPool {
707    /// Create new memory pool
708    pub fn new(strategy: AllocationStrategy) -> Self {
709        Self {
710            pools: HashMap::new(),
711            allocation_strategy: strategy,
712            fragmentation_threshold: 0.3,
713        }
714    }
715
716    /// Allocate memory from pool
717    pub fn allocate(&mut self, size: u64, device_id: u32) -> Result<u64, GpuError> {
718        // First, try to find a suitable block
719        let pool = self.pools.entry(device_id).or_default();
720
721        // Find suitable block
722        for (i, block) in pool.iter().enumerate() {
723            if !block.is_allocated && block.size >= size {
724                // Split block if too large
725                if block.size > size * 2 {
726                    let new_block = MemoryBlock {
727                        ptr: block.ptr + size,
728                        size: block.size - size,
729                        is_allocated: false,
730                        allocation_time: None,
731                    };
732                    pool.push(new_block);
733
734                    pool[i].size = size;
735                }
736
737                pool[i].is_allocated = true;
738                pool[i].allocation_time = Some(Instant::now());
739                return Ok(pool[i].ptr);
740            }
741        }
742
743        // No suitable block found, allocate new one
744        let ptr = self.allocate_new_block(size, device_id)?;
745
746        // Add to pool
747        let pool = self.pools.entry(device_id).or_default();
748        pool.push(MemoryBlock {
749            ptr,
750            size,
751            is_allocated: true,
752            allocation_time: Some(Instant::now()),
753        });
754
755        Ok(ptr)
756    }
757
758    /// Free memory back to pool
759    pub fn free(&mut self, ptr: u64, device_id: u32) -> Result<(), GpuError> {
760        let pool = self
761            .pools
762            .get_mut(&device_id)
763            .ok_or(GpuError::DeviceNotFound)?;
764
765        for block in pool.iter_mut() {
766            if block.ptr == ptr {
767                block.is_allocated = false;
768                block.allocation_time = None;
769                self.try_merge_blocks(device_id);
770                return Ok(());
771            }
772        }
773
774        Err(GpuError::InvalidPointer)
775    }
776
777    /// Defragment memory pool
778    pub fn defragment(&mut self, device_id: u32) -> Result<DefragmentationResult, GpuError> {
779        let before_fragmentation = self.calculate_fragmentation(device_id);
780
781        let pool = self
782            .pools
783            .get_mut(&device_id)
784            .ok_or(GpuError::DeviceNotFound)?;
785        let before_blocks = pool.len();
786
787        // Sort blocks by address
788        pool.sort_by_key(|b| b.ptr);
789
790        // Merge adjacent free blocks
791        let mut i = 0;
792        while i < pool.len() - 1 {
793            if !pool[i].is_allocated
794                && !pool[i + 1].is_allocated
795                && pool[i].ptr + pool[i].size == pool[i + 1].ptr
796            {
797                pool[i].size += pool[i + 1].size;
798                pool.remove(i + 1);
799            } else {
800                i += 1;
801            }
802        }
803
804        let after_blocks = pool.len();
805        let after_fragmentation = self.calculate_fragmentation(device_id);
806
807        Ok(DefragmentationResult {
808            blocks_before: before_blocks,
809            blocks_after: after_blocks,
810            fragmentation_before: before_fragmentation,
811            fragmentation_after: after_fragmentation,
812        })
813    }
814
815    fn allocate_new_block(&self, size: u64, _device_id: u32) -> Result<u64, GpuError> {
816        // Mock allocation
817        let ptr = (std::ptr::null::<u8>() as u64) + size;
818        Ok(ptr)
819    }
820
821    fn try_merge_blocks(&mut self, device_id: u32) {
822        if let Some(pool) = self.pools.get_mut(&device_id) {
823            pool.sort_by_key(|b| b.ptr);
824
825            let mut i = 0;
826            while i < pool.len() - 1 {
827                if !pool[i].is_allocated
828                    && !pool[i + 1].is_allocated
829                    && pool[i].ptr + pool[i].size == pool[i + 1].ptr
830                {
831                    pool[i].size += pool[i + 1].size;
832                    pool.remove(i + 1);
833                } else {
834                    i += 1;
835                }
836            }
837        }
838    }
839
840    fn calculate_fragmentation(&self, device_id: u32) -> f64 {
841        let empty_pool = Vec::new();
842        let pool = self.pools.get(&device_id).unwrap_or(&empty_pool);
843        let free_blocks = pool.iter().filter(|b| !b.is_allocated).count();
844        let total_blocks = pool.len();
845
846        if total_blocks == 0 {
847            0.0
848        } else {
849            free_blocks as f64 / total_blocks as f64
850        }
851    }
852}
853
854/// Asynchronous GPU operations
855pub struct AsyncGpuOps {
856    streams: HashMap<u32, Vec<GpuStream>>,
857    pending_operations: Vec<AsyncOperation>,
858}
859
860impl Default for AsyncGpuOps {
861    fn default() -> Self {
862        Self::new()
863    }
864}
865
866impl AsyncGpuOps {
867    /// Create new async GPU operations manager
868    pub fn new() -> Self {
869        Self {
870            streams: HashMap::new(),
871            pending_operations: Vec::new(),
872        }
873    }
874
875    /// Create new GPU stream
876    pub fn create_stream(&mut self, device_id: u32) -> Result<u32, GpuError> {
877        let stream_id = self.streams.get(&device_id).map_or(0, |s| s.len() as u32);
878        let stream = GpuStream {
879            id: stream_id,
880            device_id,
881            is_busy: false,
882            priority: StreamPriority::Normal,
883        };
884
885        self.streams.entry(device_id).or_default().push(stream);
886        Ok(stream_id)
887    }
888
889    /// Launch asynchronous kernel
890    pub fn launch_kernel_async(
891        &mut self,
892        kernel: &GpuKernelInfo,
893        stream_id: u32,
894    ) -> Result<AsyncOperationHandle, GpuError> {
895        let operation = AsyncOperation {
896            id: self.pending_operations.len() as u32,
897            kernel_info: kernel.clone(),
898            stream_id,
899            start_time: Instant::now(),
900            status: OperationStatus::Pending,
901        };
902
903        let handle = AsyncOperationHandle {
904            operation_id: operation.id,
905            device_id: kernel.device_id,
906        };
907
908        self.pending_operations.push(operation);
909        Ok(handle)
910    }
911
912    /// Wait for operation completion
913    pub fn wait_for_completion(
914        &mut self,
915        handle: &AsyncOperationHandle,
916    ) -> Result<GpuKernelExecution, GpuError> {
917        // Mock completion
918        std::thread::sleep(std::time::Duration::from_millis(1));
919
920        if let Some(op) = self
921            .pending_operations
922            .iter_mut()
923            .find(|op| op.id == handle.operation_id)
924        {
925            op.status = OperationStatus::Completed;
926
927            Ok(GpuKernelExecution {
928                kernel_name: op.kernel_info.name.clone(),
929                device_id: op.kernel_info.device_id,
930                grid_size: op.kernel_info.grid_size,
931                block_size: op.kernel_info.block_size,
932                shared_memory: op.kernel_info.shared_memory,
933                execution_time: op.start_time.elapsed().as_secs_f64() * 1000.0,
934                parameters: op.kernel_info.parameters.clone(),
935            })
936        } else {
937            Err(GpuError::ComputationError)
938        }
939    }
940
941    /// Check if operation is complete
942    pub fn is_complete(&self, handle: &AsyncOperationHandle) -> bool {
943        self.pending_operations
944            .iter()
945            .find(|op| op.id == handle.operation_id)
946            .is_some_and(|op| matches!(op.status, OperationStatus::Completed))
947    }
948}
949
950/// GPU optimization advisor
951pub struct GpuOptimizationAdvisor {
952    performance_history: HashMap<String, Vec<PerformanceMetric>>,
953    optimization_rules: Vec<OptimizationRule>,
954}
955
956impl Default for GpuOptimizationAdvisor {
957    fn default() -> Self {
958        Self::new()
959    }
960}
961
962impl GpuOptimizationAdvisor {
963    /// Create new optimization advisor
964    pub fn new() -> Self {
965        let mut advisor = Self {
966            performance_history: HashMap::new(),
967            optimization_rules: Vec::new(),
968        };
969
970        advisor.init_default_rules();
971        advisor
972    }
973
974    /// Analyze performance and provide recommendations
975    pub fn analyze_performance(
976        &mut self,
977        kernel_name: &str,
978        execution: &GpuKernelExecution,
979        workload_size: usize,
980    ) -> Vec<OptimizationRecommendation> {
981        let metric = PerformanceMetric {
982            execution_time: execution.execution_time,
983            throughput: workload_size as f64 / execution.execution_time,
984            memory_bandwidth: 0.0, // Would be calculated from actual memory transfers
985            occupancy: self.calculate_occupancy(execution),
986        };
987
988        self.performance_history
989            .entry(kernel_name.to_string())
990            .or_default()
991            .push(metric.clone());
992
993        let mut recommendations = Vec::new();
994
995        for rule in &self.optimization_rules {
996            if let Some(recommendation) = rule.evaluate(&metric, execution) {
997                recommendations.push(recommendation);
998            }
999        }
1000
1001        recommendations
1002    }
1003
1004    fn init_default_rules(&mut self) {
1005        self.optimization_rules.push(OptimizationRule {
1006            name: "Low Occupancy".to_string(),
1007            condition: Box::new(|metric, _| metric.occupancy < 0.5),
1008            recommendation: "Consider increasing block size or reducing register usage".to_string(),
1009            priority: RecommendationPriority::High,
1010        });
1011
1012        self.optimization_rules.push(OptimizationRule {
1013            name: "Memory Bandwidth".to_string(),
1014            condition: Box::new(|metric, _| metric.memory_bandwidth < 0.7),
1015            recommendation: "Optimize memory access patterns for better coalescing".to_string(),
1016            priority: RecommendationPriority::Medium,
1017        });
1018
1019        self.optimization_rules.push(OptimizationRule {
1020            name: "Small Grid Size".to_string(),
1021            condition: Box::new(|_, execution| {
1022                let total_threads = execution.grid_size.0
1023                    * execution.grid_size.1
1024                    * execution.grid_size.2
1025                    * execution.block_size.0
1026                    * execution.block_size.1
1027                    * execution.block_size.2;
1028                total_threads < 1024
1029            }),
1030            recommendation: "Consider increasing grid size to better utilize GPU cores".to_string(),
1031            priority: RecommendationPriority::Low,
1032        });
1033    }
1034
1035    fn calculate_occupancy(&self, execution: &GpuKernelExecution) -> f64 {
1036        let threads_per_block =
1037            execution.block_size.0 * execution.block_size.1 * execution.block_size.2;
1038        let blocks_per_sm = 2048 / threads_per_block.max(1); // Simplified calculation
1039        (blocks_per_sm as f64 / 32.0).min(1.0) // Assume 32 max blocks per SM
1040    }
1041}
1042
1043// Additional data structures for the new features
1044
1045#[derive(Debug, Clone)]
1046pub struct DistributedWorkload {
1047    pub total_elements: usize,
1048    pub operation_type: String,
1049    pub memory_requirement: u64,
1050    pub computation_complexity: f64,
1051}
1052
1053#[derive(Debug, Clone)]
1054pub struct DistributedOperation {
1055    pub kernel_name: String,
1056    pub workload: DistributedWorkload,
1057}
1058
1059#[derive(Debug, Clone)]
1060pub struct DistributedResult {
1061    pub executions: Vec<GpuKernelExecution>,
1062    pub total_time: f64,
1063    pub communication_overhead: f64,
1064}
1065
1066#[derive(Debug, Clone)]
1067pub struct GpuAssignment {
1068    pub gpu_id: u32,
1069    pub grid_size: (u32, u32, u32),
1070    pub block_size: (u32, u32, u32),
1071    pub shared_memory: u32,
1072    pub parameters: HashMap<String, String>,
1073}
1074
1075#[derive(Debug, Clone)]
1076pub struct LoadBalancer {
1077    #[allow(dead_code)]
1078    strategy: LoadBalancingStrategy,
1079}
1080
1081impl Default for LoadBalancer {
1082    fn default() -> Self {
1083        Self::new()
1084    }
1085}
1086
1087impl LoadBalancer {
1088    pub fn new() -> Self {
1089        Self {
1090            strategy: LoadBalancingStrategy::WorkloadProportional,
1091        }
1092    }
1093
1094    pub fn assign_workload(
1095        &self,
1096        workload: &DistributedWorkload,
1097        gpus: &HashMap<u32, GpuUtils>,
1098    ) -> Vec<GpuAssignment> {
1099        let mut assignments = Vec::new();
1100        let num_gpus = gpus.len() as u32;
1101
1102        if num_gpus == 0 {
1103            return assignments;
1104        }
1105
1106        let elements_per_gpu = workload.total_elements / num_gpus as usize;
1107
1108        for (gpu_id, _) in gpus.iter() {
1109            let assignment = GpuAssignment {
1110                gpu_id: *gpu_id,
1111                grid_size: (elements_per_gpu as u32 / 256, 1, 1),
1112                block_size: (256, 1, 1),
1113                shared_memory: 0,
1114                parameters: HashMap::new(),
1115            };
1116            assignments.push(assignment);
1117        }
1118
1119        assignments
1120    }
1121}
1122
1123#[derive(Debug, Clone)]
1124pub enum LoadBalancingStrategy {
1125    RoundRobin,
1126    WorkloadProportional,
1127    MemoryAware,
1128    PerformanceBased,
1129}
1130
1131#[derive(Debug, Clone)]
1132pub enum CommunicationTopology {
1133    Ring,
1134    Tree,
1135    AllToAll,
1136    Custom(Vec<Vec<u32>>),
1137}
1138
1139#[derive(Debug, Clone)]
1140pub struct SynchronizationBarrier {
1141    pub id: u32,
1142    pub participating_gpus: Vec<u32>,
1143    pub barrier_type: BarrierType,
1144}
1145
1146#[derive(Debug, Clone)]
1147pub enum BarrierType {
1148    Global,
1149    Local(Vec<u32>),
1150    Hierarchical,
1151}
1152
1153#[derive(Debug, Clone)]
1154pub struct ClusterMemoryStats {
1155    pub total_memory: u64,
1156    pub total_allocated: u64,
1157    pub total_free: u64,
1158    pub num_devices: usize,
1159    pub device_stats: HashMap<u32, MemoryStats>,
1160}
1161
1162#[derive(Debug, Clone)]
1163pub struct MemoryBlock {
1164    pub ptr: u64,
1165    pub size: u64,
1166    pub is_allocated: bool,
1167    pub allocation_time: Option<Instant>,
1168}
1169
1170#[derive(Debug, Clone)]
1171pub enum AllocationStrategy {
1172    FirstFit,
1173    BestFit,
1174    WorstFit,
1175    BuddySystem,
1176}
1177
1178#[derive(Debug, Clone)]
1179pub struct DefragmentationResult {
1180    pub blocks_before: usize,
1181    pub blocks_after: usize,
1182    pub fragmentation_before: f64,
1183    pub fragmentation_after: f64,
1184}
1185
1186#[derive(Debug, Clone)]
1187pub struct GpuStream {
1188    pub id: u32,
1189    pub device_id: u32,
1190    pub is_busy: bool,
1191    pub priority: StreamPriority,
1192}
1193
1194#[derive(Debug, Clone)]
1195pub enum StreamPriority {
1196    Low,
1197    Normal,
1198    High,
1199}
1200
1201#[derive(Debug, Clone)]
1202pub struct AsyncOperation {
1203    pub id: u32,
1204    pub kernel_info: GpuKernelInfo,
1205    pub stream_id: u32,
1206    pub start_time: Instant,
1207    pub status: OperationStatus,
1208}
1209
1210#[derive(Debug, Clone)]
1211pub enum OperationStatus {
1212    Pending,
1213    Running,
1214    Completed,
1215    Failed,
1216}
1217
1218#[derive(Debug, Clone)]
1219pub struct AsyncOperationHandle {
1220    pub operation_id: u32,
1221    pub device_id: u32,
1222}
1223
1224#[derive(Debug, Clone)]
1225pub struct PerformanceMetric {
1226    pub execution_time: f64,
1227    pub throughput: f64,
1228    pub memory_bandwidth: f64,
1229    pub occupancy: f64,
1230}
1231
1232type OptimizationCondition =
1233    Box<dyn Fn(&PerformanceMetric, &GpuKernelExecution) -> bool + Send + Sync>;
1234
1235pub struct OptimizationRule {
1236    pub name: String,
1237    pub condition: OptimizationCondition,
1238    pub recommendation: String,
1239    pub priority: RecommendationPriority,
1240}
1241
1242impl std::fmt::Debug for OptimizationRule {
1243    fn fmt(&self, f: &mut std::fmt::Formatter<'_>) -> std::fmt::Result {
1244        f.debug_struct("OptimizationRule")
1245            .field("name", &self.name)
1246            .field("condition", &"<function>")
1247            .field("recommendation", &self.recommendation)
1248            .field("priority", &self.priority)
1249            .finish()
1250    }
1251}
1252
1253impl Clone for OptimizationRule {
1254    fn clone(&self) -> Self {
1255        // Note: We can't clone the function pointer directly,
1256        // so we create a new rule with a placeholder condition
1257        // This is a limitation when working with function pointers
1258        OptimizationRule {
1259            name: self.name.clone(),
1260            condition: Box::new(|_metric, _execution| false), // Safe default
1261            recommendation: self.recommendation.clone(),
1262            priority: self.priority.clone(),
1263        }
1264    }
1265}
1266
1267impl OptimizationRule {
1268    pub fn evaluate(
1269        &self,
1270        metric: &PerformanceMetric,
1271        execution: &GpuKernelExecution,
1272    ) -> Option<OptimizationRecommendation> {
1273        if (self.condition)(metric, execution) {
1274            Some(OptimizationRecommendation {
1275                rule_name: self.name.clone(),
1276                recommendation: self.recommendation.clone(),
1277                priority: self.priority.clone(),
1278                estimated_improvement: 0.0, // Default value
1279            })
1280        } else {
1281            None
1282        }
1283    }
1284}
1285
1286#[derive(Debug, Clone)]
1287pub struct OptimizationRecommendation {
1288    pub rule_name: String,
1289    pub recommendation: String,
1290    pub priority: RecommendationPriority,
1291    pub estimated_improvement: f64,
1292}
1293
1294#[derive(Debug, Clone)]
1295pub enum RecommendationPriority {
1296    Low,
1297    Medium,
1298    High,
1299    Critical,
1300}
1301
1302#[allow(non_snake_case)]
1303#[cfg(test)]
1304mod tests {
1305    use super::*;
1306
1307    #[test]
1308    fn test_gpu_utils_creation() {
1309        let utils = GpuUtils::new();
1310        assert!(utils.devices.is_empty());
1311        assert!(utils.allocations.read().unwrap().is_empty());
1312    }
1313
1314    #[test]
1315    fn test_device_initialization() {
1316        let mut utils = GpuUtils::new();
1317        assert!(utils.init_devices().is_ok());
1318        assert!(!utils.devices.is_empty());
1319    }
1320
1321    #[test]
1322    fn test_device_selection() {
1323        let mut utils = GpuUtils::new();
1324        utils.init_devices().unwrap();
1325
1326        let best_device = utils.get_best_device();
1327        assert!(best_device.is_some());
1328        assert!(!best_device.unwrap().is_integrated);
1329    }
1330
1331    #[test]
1332    fn test_memory_allocation() {
1333        let mut utils = GpuUtils::new();
1334        utils.init_devices().unwrap();
1335
1336        let ptr = utils.allocate_memory(1024, 0, "test").unwrap();
1337        assert!(ptr > 0);
1338
1339        assert!(utils.free_memory(ptr).is_ok());
1340    }
1341
1342    #[test]
1343    fn test_kernel_execution() {
1344        let mut utils = GpuUtils::new();
1345        utils.init_devices().unwrap();
1346
1347        let kernel_info = GpuKernelInfo {
1348            name: "test_kernel".to_string(),
1349            device_id: 0,
1350            grid_size: (1, 1, 1),
1351            block_size: (256, 1, 1),
1352            shared_memory: 0,
1353            parameters: HashMap::new(),
1354        };
1355
1356        let execution = utils.execute_kernel(&kernel_info).unwrap();
1357        assert_eq!(execution.kernel_name, "test_kernel");
1358        assert!(execution.execution_time > 0.0);
1359    }
1360
1361    #[test]
1362    fn test_array_operations() {
1363        let a = vec![1.0, 2.0, 3.0, 4.0];
1364        let b = vec![5.0, 6.0, 7.0, 8.0];
1365
1366        let result = GpuArrayOps::add_arrays(&a, &b, 0).unwrap();
1367        assert_eq!(result, vec![6.0, 8.0, 10.0, 12.0]);
1368
1369        let result = GpuArrayOps::multiply_arrays(&a, &b, 0).unwrap();
1370        assert_eq!(result, vec![5.0, 12.0, 21.0, 32.0]);
1371    }
1372
1373    #[test]
1374    fn test_matrix_multiplication() {
1375        let a = vec![1.0, 2.0, 3.0, 4.0]; // 2x2
1376        let b = vec![5.0, 6.0, 7.0, 8.0]; // 2x2
1377
1378        let result = GpuArrayOps::matrix_multiply(&a, &b, 2, 2, 2, 0).unwrap();
1379        assert_eq!(result, vec![19.0, 22.0, 43.0, 50.0]);
1380    }
1381
1382    #[test]
1383    fn test_activation_functions() {
1384        let input = vec![-1.0, 0.0, 1.0, 2.0];
1385
1386        let result = GpuArrayOps::apply_activation(&input, ActivationFunction::ReLU, 0).unwrap();
1387        assert_eq!(result, vec![0.0, 0.0, 1.0, 2.0]);
1388
1389        let result = GpuArrayOps::apply_activation(&input, ActivationFunction::Sigmoid, 0).unwrap();
1390        assert!(result.iter().all(|&x| x >= 0.0 && x <= 1.0));
1391    }
1392
1393    #[test]
1394    fn test_reduction_operations() {
1395        let input = vec![1.0, 2.0, 3.0, 4.0, 5.0];
1396
1397        let sum = GpuArrayOps::reduce_sum(&input, 0).unwrap();
1398        assert_eq!(sum, 15.0);
1399
1400        let max = GpuArrayOps::reduce_max(&input, 0).unwrap();
1401        assert_eq!(max, 5.0);
1402    }
1403
1404    #[test]
1405    fn test_gpu_profiler() {
1406        let mut profiler = GpuProfiler::new();
1407
1408        profiler.record_kernel_time("test_kernel", 1.5);
1409        profiler.record_kernel_time("test_kernel", 2.0);
1410        profiler.record_memory_transfer(1024, "host_to_device");
1411
1412        let stats = profiler.get_kernel_stats();
1413        assert!(stats.contains_key("test_kernel"));
1414        assert_eq!(stats["test_kernel"].count, 2);
1415        assert_eq!(stats["test_kernel"].avg_time, 1.75);
1416
1417        let mem_stats = profiler.get_memory_transfer_stats();
1418        assert_eq!(mem_stats.total_transfers, 1);
1419        assert_eq!(mem_stats.total_bytes, 1024);
1420    }
1421
1422    #[test]
1423    fn test_throughput_estimation() {
1424        let mut utils = GpuUtils::new();
1425        utils.init_devices().unwrap();
1426
1427        let throughput = utils.estimate_throughput(0, 1000, "add");
1428        assert!(throughput > 0.0);
1429
1430        let should_use = utils.should_use_gpu(1000, "add");
1431        assert!(should_use);
1432
1433        let should_not_use = utils.should_use_gpu(100, "add");
1434        assert!(!should_not_use);
1435    }
1436
1437    #[test]
1438    fn test_memory_stats() {
1439        let mut utils = GpuUtils::new();
1440        utils.init_devices().unwrap();
1441
1442        let _ptr = utils.allocate_memory(1024, 0, "test").unwrap();
1443        let stats = utils.get_memory_stats();
1444
1445        assert!(stats.contains_key(&0));
1446        assert_eq!(stats[&0].allocated_memory, 1024);
1447        assert_eq!(stats[&0].num_allocations, 1);
1448    }
1449
1450    #[test]
1451    fn test_error_handling() {
1452        let utils = GpuUtils::new();
1453
1454        // Test device not found
1455        let result = utils.allocate_memory(1024, 999, "test");
1456        assert!(matches!(result, Err(GpuError::DeviceNotFound)));
1457
1458        // Test invalid pointer
1459        let result = utils.free_memory(0);
1460        assert!(matches!(result, Err(GpuError::InvalidPointer)));
1461
1462        // Test shape mismatch
1463        let a = vec![1.0, 2.0];
1464        let b = vec![3.0, 4.0, 5.0];
1465        let result = GpuArrayOps::add_arrays(&a, &b, 0);
1466        assert!(matches!(result, Err(GpuError::ShapeMismatch)));
1467    }
1468
1469    // Tests for new GPU computing features
1470
1471    #[test]
1472    fn test_multi_gpu_coordinator() {
1473        let mut coordinator = MultiGpuCoordinator::new();
1474
1475        // Test GPU initialization
1476        let result = coordinator.init_all_gpus();
1477        assert!(result.is_ok() || matches!(result, Err(GpuError::InitializationFailed(_))));
1478
1479        // Test workload assignment
1480        let workload = DistributedWorkload {
1481            total_elements: 10_000,
1482            operation_type: "matrix_multiply".to_string(),
1483            memory_requirement: 1024 * 1024,
1484            computation_complexity: 1.0,
1485        };
1486
1487        let assignments = coordinator.get_optimal_assignment(&workload);
1488        assert!(!assignments.is_empty() || coordinator.gpus.is_empty());
1489    }
1490
1491    #[test]
1492    fn test_distributed_operation() {
1493        let mut coordinator = MultiGpuCoordinator::new();
1494        let init_result = coordinator.init_all_gpus();
1495
1496        let operation = DistributedOperation {
1497            kernel_name: "test_kernel".to_string(),
1498            workload: DistributedWorkload {
1499                total_elements: 1000,
1500                operation_type: "add".to_string(),
1501                memory_requirement: 4000,
1502                computation_complexity: 0.5,
1503            },
1504        };
1505
1506        if init_result.is_ok() && !coordinator.gpus.is_empty() {
1507            let result = coordinator.execute_distributed(&operation);
1508
1509            // In a test environment, GPU operations might fail due to mock limitations
1510            // This is acceptable as we're testing the logic, not actual GPU execution
1511            if result.is_ok() {
1512                let dist_result = result.unwrap();
1513                assert!(!dist_result.executions.is_empty());
1514                assert!(dist_result.total_time >= 0.0);
1515            } else {
1516                // GPU execution failed, which is acceptable in test environment
1517                // Just verify that we have the right number of GPUs
1518                assert!(!coordinator.gpus.is_empty());
1519            }
1520        } else {
1521            // If no GPUs are available (which is expected in test environment),
1522            // test should pass as this is a valid scenario
1523            assert!(coordinator.gpus.is_empty());
1524        }
1525    }
1526
1527    #[test]
1528    fn test_cluster_memory_stats() {
1529        let mut coordinator = MultiGpuCoordinator::new();
1530        let _ = coordinator.init_all_gpus();
1531
1532        let stats = coordinator.get_cluster_memory_stats();
1533        assert_eq!(stats.num_devices, coordinator.gpus.len());
1534        assert_eq!(stats.total_free, stats.total_memory - stats.total_allocated);
1535    }
1536
1537    #[test]
1538    fn test_gpu_memory_pool() {
1539        let mut pool = GpuMemoryPool::new(AllocationStrategy::FirstFit);
1540
1541        // Test allocation
1542        let ptr1 = pool.allocate(1024, 0);
1543        assert!(ptr1.is_ok());
1544
1545        let ptr2 = pool.allocate(2048, 0);
1546        assert!(ptr2.is_ok());
1547
1548        // Test freeing
1549        let free_result = pool.free(ptr1.unwrap(), 0);
1550        assert!(free_result.is_ok());
1551
1552        // Test defragmentation
1553        let defrag_result = pool.defragment(0);
1554        assert!(defrag_result.is_ok());
1555
1556        let defrag = defrag_result.unwrap();
1557        assert!(defrag.fragmentation_after <= defrag.fragmentation_before);
1558    }
1559
1560    #[test]
1561    fn test_memory_pool_strategies() {
1562        let strategies = vec![
1563            AllocationStrategy::FirstFit,
1564            AllocationStrategy::BestFit,
1565            AllocationStrategy::WorstFit,
1566            AllocationStrategy::BuddySystem,
1567        ];
1568
1569        for strategy in strategies {
1570            let mut pool = GpuMemoryPool::new(strategy);
1571            let ptr = pool.allocate(1024, 0);
1572            assert!(ptr.is_ok());
1573        }
1574    }
1575
1576    #[test]
1577    fn test_async_gpu_operations() {
1578        let mut async_ops = AsyncGpuOps::new();
1579
1580        // Test stream creation
1581        let stream_id = async_ops.create_stream(0);
1582        assert!(stream_id.is_ok());
1583
1584        // Test async kernel launch
1585        let kernel_info = GpuKernelInfo {
1586            name: "async_test".to_string(),
1587            device_id: 0,
1588            grid_size: (1, 1, 1),
1589            block_size: (256, 1, 1),
1590            shared_memory: 0,
1591            parameters: HashMap::new(),
1592        };
1593
1594        let handle = async_ops.launch_kernel_async(&kernel_info, stream_id.unwrap());
1595        assert!(handle.is_ok());
1596
1597        let operation_handle = handle.unwrap();
1598
1599        // Test completion checking
1600        let _is_complete_before = async_ops.is_complete(&operation_handle);
1601
1602        // Test waiting for completion
1603        let execution = async_ops.wait_for_completion(&operation_handle);
1604        assert!(execution.is_ok());
1605
1606        let is_complete_after = async_ops.is_complete(&operation_handle);
1607        assert!(is_complete_after);
1608    }
1609
1610    #[test]
1611    fn test_gpu_optimization_advisor() {
1612        let mut advisor = GpuOptimizationAdvisor::new();
1613
1614        // Test performance analysis
1615        let execution = GpuKernelExecution {
1616            kernel_name: "test_kernel".to_string(),
1617            device_id: 0,
1618            grid_size: (10, 1, 1),  // Small grid size
1619            block_size: (32, 1, 1), // Small block size
1620            shared_memory: 0,
1621            execution_time: 5.0,
1622            parameters: HashMap::new(),
1623        };
1624
1625        let recommendations = advisor.analyze_performance("test_kernel", &execution, 1000);
1626        assert!(!recommendations.is_empty());
1627
1628        // Should recommend increasing grid size due to low thread count
1629        let has_grid_size_recommendation = recommendations
1630            .iter()
1631            .any(|r| r.rule_name.contains("Grid Size"));
1632        assert!(has_grid_size_recommendation);
1633    }
1634
1635    #[test]
1636    fn test_load_balancer() {
1637        let balancer = LoadBalancer::new();
1638        let mut gpus = HashMap::new();
1639
1640        // Mock GPU setup
1641        let mut gpu1 = GpuUtils::new();
1642        let mut gpu2 = GpuUtils::new();
1643        let _ = gpu1.init_devices();
1644        let _ = gpu2.init_devices();
1645
1646        gpus.insert(0, gpu1);
1647        gpus.insert(1, gpu2);
1648
1649        let workload = DistributedWorkload {
1650            total_elements: 10_000,
1651            operation_type: "matrix_multiply".to_string(),
1652            memory_requirement: 1024 * 1024,
1653            computation_complexity: 1.0,
1654        };
1655
1656        let assignments = balancer.assign_workload(&workload, &gpus);
1657        assert_eq!(assignments.len(), gpus.len());
1658
1659        // Verify assignments distribute workload
1660        let total_elements: u32 = assignments
1661            .iter()
1662            .map(|a| a.grid_size.0 * a.block_size.0)
1663            .sum();
1664        assert!(total_elements > 0);
1665    }
1666
1667    #[test]
1668    fn test_stream_priorities() {
1669        let mut async_ops = AsyncGpuOps::new();
1670        let _stream_id = async_ops.create_stream(0).unwrap();
1671
1672        // Verify stream was created with default priority
1673        let streams = async_ops.streams.get(&0).unwrap();
1674        assert_eq!(streams.len(), 1);
1675        assert!(matches!(streams[0].priority, StreamPriority::Normal));
1676    }
1677
1678    #[test]
1679    fn test_memory_block_operations() {
1680        let block1 = MemoryBlock {
1681            ptr: 1000,
1682            size: 1024,
1683            is_allocated: false,
1684            allocation_time: None,
1685        };
1686
1687        let block2 = MemoryBlock {
1688            ptr: 2024,
1689            size: 2048,
1690            is_allocated: true,
1691            allocation_time: Some(Instant::now()),
1692        };
1693
1694        assert!(!block1.is_allocated);
1695        assert!(block2.is_allocated);
1696        assert!(block1.allocation_time.is_none());
1697        assert!(block2.allocation_time.is_some());
1698    }
1699
1700    #[test]
1701    fn test_distributed_workload() {
1702        let workload = DistributedWorkload {
1703            total_elements: 1_000_000,
1704            operation_type: "fft".to_string(),
1705            memory_requirement: 8 * 1_000_000, // 8 bytes per element
1706            computation_complexity: 2.5,       // O(n log n) for FFT
1707        };
1708
1709        assert_eq!(workload.total_elements, 1_000_000);
1710        assert_eq!(workload.operation_type, "fft");
1711        assert!(workload.computation_complexity > 1.0);
1712    }
1713
1714    #[test]
1715    fn test_communication_topology() {
1716        let ring_topology = CommunicationTopology::Ring;
1717        let tree_topology = CommunicationTopology::Tree;
1718        let all_to_all_topology = CommunicationTopology::AllToAll;
1719        let custom_topology =
1720            CommunicationTopology::Custom(vec![vec![1, 2], vec![0, 3], vec![0, 3], vec![1, 2]]);
1721
1722        // Test that all topology types can be created
1723        match ring_topology {
1724            CommunicationTopology::Ring => {}
1725            _ => panic!(),
1726        }
1727        match tree_topology {
1728            CommunicationTopology::Tree => {}
1729            _ => panic!(),
1730        }
1731        match all_to_all_topology {
1732            CommunicationTopology::AllToAll => {}
1733            _ => panic!(),
1734        }
1735        match custom_topology {
1736            CommunicationTopology::Custom(_) => {}
1737            _ => panic!(),
1738        }
1739    }
1740
1741    #[test]
1742    fn test_synchronization_barrier() {
1743        let barrier = SynchronizationBarrier {
1744            id: 1,
1745            participating_gpus: vec![0, 1, 2, 3],
1746            barrier_type: BarrierType::Global,
1747        };
1748
1749        assert_eq!(barrier.id, 1);
1750        assert_eq!(barrier.participating_gpus.len(), 4);
1751        assert!(matches!(barrier.barrier_type, BarrierType::Global));
1752    }
1753
1754    #[test]
1755    fn test_optimization_recommendation_priorities() {
1756        let low_priority = RecommendationPriority::Low;
1757        let medium_priority = RecommendationPriority::Medium;
1758        let high_priority = RecommendationPriority::High;
1759        let critical_priority = RecommendationPriority::Critical;
1760
1761        // Test that all priority levels can be created
1762        match low_priority {
1763            RecommendationPriority::Low => {}
1764            _ => panic!(),
1765        }
1766        match medium_priority {
1767            RecommendationPriority::Medium => {}
1768            _ => panic!(),
1769        }
1770        match high_priority {
1771            RecommendationPriority::High => {}
1772            _ => panic!(),
1773        }
1774        match critical_priority {
1775            RecommendationPriority::Critical => {}
1776            _ => panic!(),
1777        }
1778    }
1779
1780    #[test]
1781    fn test_performance_metric_calculations() {
1782        let metric = PerformanceMetric {
1783            execution_time: 10.0,  // ms
1784            throughput: 1000.0,    // elements/ms
1785            memory_bandwidth: 0.8, // 80% utilization
1786            occupancy: 0.75,       // 75% occupancy
1787        };
1788
1789        assert!(metric.execution_time > 0.0);
1790        assert!(metric.throughput > 0.0);
1791        assert!(metric.memory_bandwidth <= 1.0);
1792        assert!(metric.occupancy <= 1.0);
1793    }
1794
1795    #[test]
1796    fn test_operation_status_transitions() {
1797        let mut operation = AsyncOperation {
1798            id: 0,
1799            kernel_info: GpuKernelInfo {
1800                name: "test".to_string(),
1801                device_id: 0,
1802                grid_size: (1, 1, 1),
1803                block_size: (1, 1, 1),
1804                shared_memory: 0,
1805                parameters: HashMap::new(),
1806            },
1807            stream_id: 0,
1808            start_time: Instant::now(),
1809            status: OperationStatus::Pending,
1810        };
1811
1812        assert!(matches!(operation.status, OperationStatus::Pending));
1813
1814        operation.status = OperationStatus::Running;
1815        assert!(matches!(operation.status, OperationStatus::Running));
1816
1817        operation.status = OperationStatus::Completed;
1818        assert!(matches!(operation.status, OperationStatus::Completed));
1819    }
1820}