Module random_forest

Module random_forest 

Source
Expand description

Random Forest implementation using SmartCore

This module provides Random Forest Classifier and Regressor implementations that create ensembles of Decision Trees with bootstrap sampling.

Structs§

DiversityMeasures
Ensemble diversity measures for evaluating Random Forest and Extra Trees diversity
RandomForestClassifier
Random Forest Classifier
RandomForestConfig
Configuration for Random Forest
RandomForestRegressor
Random Forest Regressor
RegressionDiversityMeasures
Calculate diversity measures for regression ensembles

Enums§

ClassWeight
Class balancing strategy for imbalanced datasets
SamplingStrategy
Sampling strategy for imbalanced datasets

Functions§

balanced_bootstrap_sample
Generate balanced bootstrap sample indices
calculate_class_weights
Calculate class weights for balanced Random Forest
calculate_ensemble_diversity
Calculate comprehensive diversity measures for an ensemble of classifiers
calculate_regression_diversity
Calculate diversity measures for regression ensembles