Expand description
Hyperparameter optimization for SVM algorithms
This module provides comprehensive hyperparameter optimization utilities for SVM models, including grid search, random search, and Bayesian optimization approaches.
Methods included:
- Grid Search: Exhaustive search over parameter grid
- Random Search: Random sampling from parameter distributions
- Bayesian Optimization: Gaussian Process-based optimization
- Evolutionary Algorithms: Genetic algorithm for parameter search
- Cross-validation integration for robust evaluation
Re-exports§
pub use bayesian_optimization::BayesianOptimizationCV;pub use evolutionary_optimization::EvolutionaryOptimizationCV;pub use grid_search::GridSearchCV;pub use random_search::RandomSearchCV;
Modules§
- bayesian_
optimization - Bayesian Optimization for hyperparameter tuning
- evolutionary_
optimization - Evolutionary Algorithms for hyperparameter optimization
- grid_
search - Grid Search Cross-Validation for hyperparameter optimization
- random_
search - Random Search Cross-Validation for hyperparameter optimization
Structs§
- Optimization
Config - Configuration for optimization algorithms
- Optimization
Result - Optimization result
- Parameter
Set - Parameter set for SVM
- Search
Space - Hyperparameter search space
Enums§
- Parameter
Spec - Parameter specification for optimization
- Scoring
Metric - Scoring metrics for evaluation