Module hyperparameter_optimization

Module hyperparameter_optimization 

Source
Expand description

Hyperparameter optimization for SVM algorithms

This module provides comprehensive hyperparameter optimization utilities for SVM models, including grid search, random search, and Bayesian optimization approaches.

Methods included:

  • Grid Search: Exhaustive search over parameter grid
  • Random Search: Random sampling from parameter distributions
  • Bayesian Optimization: Gaussian Process-based optimization
  • Evolutionary Algorithms: Genetic algorithm for parameter search
  • Cross-validation integration for robust evaluation

Re-exports§

pub use bayesian_optimization::BayesianOptimizationCV;
pub use evolutionary_optimization::EvolutionaryOptimizationCV;
pub use grid_search::GridSearchCV;
pub use random_search::RandomSearchCV;

Modules§

bayesian_optimization
Bayesian Optimization for hyperparameter tuning
evolutionary_optimization
Evolutionary Algorithms for hyperparameter optimization
grid_search
Grid Search Cross-Validation for hyperparameter optimization
random_search
Random Search Cross-Validation for hyperparameter optimization

Structs§

OptimizationConfig
Configuration for optimization algorithms
OptimizationResult
Optimization result
ParameterSet
Parameter set for SVM
SearchSpace
Hyperparameter search space

Enums§

ParameterSpec
Parameter specification for optimization
ScoringMetric
Scoring metrics for evaluation