Expand description
Support Vector Machines for classification and regression
This module provides Support Vector Machine implementations including:
- SVC: Support Vector Classification
- SVR: Support Vector Regression
- LinearSVC: Linear Support Vector Classification (coordinate descent)
- LinearSVR: Linear Support Vector Regression (coordinate descent)
- SGDClassifier: Stochastic Gradient Descent SVM for large-scale learning
- NuSVC: Nu Support Vector Classification with automatic parameter selection
- NuSVR: Nu Support Vector Regression
- LSSVM: Least Squares Support Vector Machine for efficient training
- RobustSVM: Robust SVM with Huber and other robust loss functions
- OutlierResistantSVM: Outlier-resistant SVM with automatic outlier detection and handling
- FuzzySVM: Fuzzy SVM for handling noisy and uncertain data
- RankingSVM: Ranking SVM for learning-to-rank and structured output problems
- OrdinalRegressionSVM: Ordinal regression SVM for ordered categorical targets
- BinaryRelevanceSVM: Multi-label SVM using binary relevance strategy
- ClassifierChainsSVM: Multi-label SVM using classifier chains
- LabelPowersetSVM: Multi-label SVM using label powerset transformation
- StructuredSVM: Structured SVM for sequence labeling and structured prediction
- MetricLearningSVM: Metric learning SVM for learning optimal distance metrics
- TransductiveSVM: Transductive SVM for semi-supervised learning with unlabeled data
- SelfTrainingSVM: Self-training SVM for iterative semi-supervised learning
- CoTrainingSVM: Co-training SVM using multiple views for semi-supervised learning
- KernelPCA: Kernel Principal Component Analysis for dimensionality reduction
- OnlineSVM: Online learning for streaming data
- OutOfCoreSVM: Out-of-core training for datasets larger than memory
- DistributedSVM: Distributed training across multiple processes/machines
- AdaptiveSVM: Adaptive regularization with automatic parameter selection
- ADMMSVM: Alternating Direction Method of Multipliers for distributed optimization
- NewtonSVM: Newton methods for fast second-order optimization
- GridSearchCV: Grid search for hyperparameter optimization
- RandomSearchCV: Random search for hyperparameter optimization
- BayesianOptimizationCV: Bayesian optimization for efficient hyperparameter tuning
- Various kernel functions (Linear, RBF, Polynomial, Graph kernels, etc.)
- SMO algorithm for training
Re-exports§
pub use errors::ErrorSeverity;pub use errors::SVMError;pub use errors::SVMResult;pub use hyperparameter_optimization::BayesianOptimizationCV;pub use hyperparameter_optimization::EvolutionaryOptimizationCV;pub use hyperparameter_optimization::GridSearchCV;pub use hyperparameter_optimization::OptimizationConfig;pub use hyperparameter_optimization::OptimizationResult;pub use hyperparameter_optimization::ParameterSet;pub use hyperparameter_optimization::ParameterSpec;pub use hyperparameter_optimization::RandomSearchCV;pub use hyperparameter_optimization::ScoringMetric;pub use hyperparameter_optimization::SearchSpace;pub use adaptive_regularization::*;pub use calibration::*;pub use chunked_processing::*;pub use compressed_kernels::*;pub use computer_vision_kernels::*;pub use crammer_singer::*;pub use decomposition::*;pub use distributed_svm::*;pub use dual_coordinate_ascent::*;pub use fuzzy_svm::*;pub use gpu_kernels::*;pub use graph_semi_supervised::*;pub use group_lasso_svm::*;pub use kernel_pca::*;pub use kernels::*;pub use linear_svc::*;pub use linear_svr::*;pub use ls_svm::*;pub use memory_mapped_kernels::*;pub use metric_learning_svm::*;pub use multi_label_svm::*;pub use multiclass::*;pub use nusvc::*;pub use nusvr::*;pub use online_svm::*;pub use ordinal_regression_svm::*;pub use out_of_core_svm::*;pub use outlier_resistant_svm::*;pub use parallel_smo::*;pub use primal_dual_methods::*;pub use ranking_svm::*;pub use regularization_path::*;pub use robust_svm::*;pub use sgd_svm::*;pub use simd_kernels::*;pub use smo::*;pub use sparse_svm::*;pub use structured_svm::*;pub use svc::*;pub use svr::*;pub use text_classification::*;pub use thread_safe_cache::*;pub use time_series::*;pub use topic_model_integration::*;pub use visualization::*;
Modules§
- adaptive_
regularization - Adaptive Regularization Methods for SVMs
- array_
views - Zero-copy array views utilities
- calibration
- Probability calibration methods for SVM classifiers
- chunked_
processing - Chunked processing for large-scale SVM training
- compressed_
kernels - Compressed kernel representations for memory-efficient SVM training
- computer_
vision_ kernels - Computer Vision Kernels for SVM
- crammer_
singer - Crammer-Singer multi-class SVM implementation
- dataset_
ops - Dataset operations with zero-copy semantics
- decomposition
- Decomposition methods for large-scale SVM optimization
- distributed_
svm - Distributed Support Vector Machine Training
- dual_
coordinate_ ascent - Dual Coordinate Ascent algorithm for large-scale SVM training
- errors
- Comprehensive Error Types for SVM Operations
- fuzzy_
svm - Fuzzy Support Vector Machines for handling noisy and uncertain data
- gpu_
kernels - GPU-accelerated kernel computations using WGPU
- graph_
semi_ supervised - Graph-based Semi-supervised Support Vector Machines
- group_
lasso_ svm - Group Lasso Support Vector Machine for feature selection
- hyperparameter_
optimization - Hyperparameter optimization for SVM algorithms
- kernel_
pca - Kernel Principal Component Analysis (Kernel PCA) for non-linear dimensionality reduction
- kernels
- Kernel functions for Support Vector Machines
- linear_
svc - Linear Support Vector Classification using coordinate descent
- linear_
svr - Linear Support Vector Regression using coordinate descent
- ls_svm
- Least Squares Support Vector Machines (LS-SVM)
- memory_
mapped_ kernels - Memory-mapped kernel matrices for large-scale SVM training
- metric_
learning_ svm - Metric Learning Support Vector Machines
- multi_
label_ svm - Multi-Label Support Vector Machines
- multiclass
- Multi-class SVM classification using One-vs-Rest and One-vs-One strategies
- nusvc
- Nu Support Vector Classification
- nusvr
- Nu Support Vector Regression
- online_
svm - Online SVM algorithms for streaming data and incremental learning
- ordinal_
regression_ svm - Ordinal Regression Support Vector Machines
- out_
of_ core_ svm - Out-of-Core Support Vector Machine Training
- outlier_
resistant_ svm - Outlier-Resistant Support Vector Machines
- parallel_
smo - Parallel Sequential Minimal Optimization (SMO) algorithm for SVM training
- primal_
dual_ methods - Primal-Dual Methods for SVM Optimization
- ranking_
svm - Ranking Support Vector Machines for Learning-to-Rank
- regularization_
path - Regularization Path Algorithms for SVM
- robust_
svm - Robust Support Vector Machines with robust loss functions
- sgd_svm
- Stochastic Gradient Descent SVM implementations for large-scale learning
- simd_
kernels - SIMD-optimized kernel functions for enhanced performance
- smo
- Sequential Minimal Optimization (SMO) algorithm for SVM training
- sparse_
svm - Sparse Support Vector Machine with L1 regularization
- structured_
svm - Structured Support Vector Machines
- svc
- Support Vector Classification (SVC) implementation
- svr
- Support Vector Regression (SVR) implementation
- text_
classification - Text classification specific kernels and utilities for SVM
- thread_
safe_ cache - Thread-safe kernel caching for parallel SVM processing
- time_
series - Time series kernels and utilities for SVM
- topic_
model_ integration - Topic Model Integration for Text Classification SVM
- validation_
ml - ML-specific validation functions
- visualization
- Support Vector Machine Visualization Tools
Macros§
- error_
context - Macro for adding location context automatically
Structs§
- Accuracy
Comparison - Accuracy comparison between sklears and reference implementation
- Advanced
Parallel Ensemble - Advanced parallel ensemble trainer
- Alert
Config - Alert configuration
- Algorithm
Benchmark - Algorithm benchmark definition
- Algorithmic
Criteria - Algorithmic correctness criteria
- Analysis
Result - Result from a performance analyzer
- ApiVersion
Info - Information about API versions and compatibility
- Array
Pool - Memory pool for efficient array allocation
- Array
Stats - Advanced array statistics with optimized implementations
- Autocomplete
Trie - Automated
Benchmark Runner - Benchmark runner for automated CI/CD integration
- Base
Estimator Config - Configuration for base estimators
- Benchmark
Config - Configuration for benchmark execution
- Benchmark
Results - Results from running all benchmarks
- Benchmark
RunResult - Result from a single benchmark run
- Benchmark
Suite - Benchmark suite for running multiple algorithm comparisons
- CICoverage
Result - CI/CD coverage check result
- CIDConfig
- Configuration for CI/CD coverage checks
- Code
Formatter - Main formatter for checking code quality
- Code
Quality Criteria - Code quality criteria
- Compilation
Impact - Contribution
Checker - Main contribution checker and validator
- Contribution
Config - Configuration for contribution checking
- Contribution
Result - Result of contribution check
- Contribution
Workflow - Contribution workflow helper
- CoverageCI
- CI/CD specific coverage functionality
- Coverage
Collector - Main code coverage collector and analyzer
- Coverage
Config - Configuration for coverage collection and analysis
- Coverage
Report - Comprehensive coverage analysis report
- CowDataset
- Zero-copy features and target pair
- Cross
Platform Model - Cross-platform model exchange format
- CsvOptions
- CSV-specific options
- Data
Frame - Pandas-compatible DataFrame structure
- Dataset
- A simple dataset structure for machine learning operations
- Dependency
Analysis - Dependency
Analyzer - Dependency
Audit - Main dependency audit system
- Dependency
Info - Information about a dependency
- Dependency
Recommendation - Recommendation for dependency optimization
- Dependency
Report - Comprehensive dependency audit report
- Distributed
Ensemble - Distributed ensemble training (placeholder for future implementation)
- Document
Formatter - Document formatter for converting API references to various output formats
- Documentation
Criteria - Documentation criteria
- Ensemble
Config - Configuration for ensemble methods
- Ensemble
Parallel Config - Parallel training configuration
- Error
Chain - Chain multiple errors together for better debugging
- Example
Generator - Example
Validator - Example validator for checking and validating code examples
- Explorer
Config - Configuration for the trait explorer with comprehensive options
- Feature
Count - Type-safe feature count
- Fitted
Scikit Learn Model - Fitted scikit-learn compatible model
- Format
Detector - Format detection utilities
- Format
Options - Format-specific options container
- Format
Reader - Generic format reader interface
- Format
Writer - Generic format writer interface
- Formatting
Config - Configuration for code formatting checks
- Formatting
Config Builder - Builder for creating formatting configurations
- Formatting
Issue - Individual formatting issue
- Formatting
Report - Result of formatting checks
- Gate
Result - Result of individual quality gate
- Hdf5
Options - HDF5-specific options
- Input
Sanitizer - Input sanitizer with configurable policies
- Json
Options - JSON-specific options
- Learning
Path - Linear
Regression Config - Example validated configuration for linear regression
- Linear
Regression Config Builder - Builder for LinearRegressionConfig with compile-time validation
- Live
Code Runner - Live code execution engine for interactive examples
- MLFormatting
Rules - ML-specific formatting rules
- Matrix
Ops - Advanced matrix operations with optimizations
- Memory
Footprint - Memory
Ops - Memory-efficient operations for large arrays
- Memory
Pool Stats - Statistics for memory pool usage
- Memory
Safety - Memory safety documentation and validation utilities
- Memory
Safety Guarantee - Memory safety guarantee documentation
- Memory
Statistics - Memory usage statistics
- Mock
Config - Configuration for mock estimator behavior
- Mock
Ensemble - Mock ensemble for testing ensemble methods
- Mock
Estimator - Mock estimator with configurable behavior for testing
- Mock
Estimator Builder - Builder for configuring mock estimators
- Mock
State Snapshot - Snapshot of mock state for testing
- Mock
Transform Config - Configuration for mock transformer
- Mock
Transformer - Mock transformer for testing transformation pipelines
- Mock
Transformer Builder - Builder for mock transformers
- Modular
ApiReference - Complete API reference for a crate
- Modular
ApiReference Generator - Main API reference generator with comprehensive formatting capabilities
- Modular
Code Example - Code example extracted from documentation
- Modular
Cross Reference Builder - Cross-reference builder for linking API elements
- Modular
Generator Config - Configuration for the API reference generator
- Modular
Trait Analyzer - Trait analyzer for extracting trait information from Rust code
- Modular
Trait Info - Information about a trait
- Modular
Type Extractor - Type extractor for analyzing type definitions from Rust code
- Modular
Type Info - Information about a type
- Numpy
Array - NumPy-compatible array wrapper
- Numpy
Options - NumPy-specific options
- Parallel
Config - Configuration for parallel operations
- Parallel
Cross Validator - Cross-validation utilities with parallel execution
- Parallel
Ensemble Ops - Parallel ensemble operations
- Parallel
Matrix Ops - Parallel matrix operations
- Parquet
Options - Parquet-specific options
- Performance
Analysis - Performance
Criteria - Performance criteria
- Performance
Report - Complete performance report
- Performance
Reporter - Main performance reporting and analysis system
- Positive
Validator - Positive number validator
- Probability
- Type-safe probability value constrained to [0, 1]
- Probability
Validator - Probability validator (0.0 to 1.0)
- Progress
Tracker - Public
ApiConfig - Configuration for public APIs
- Public
ApiConfig Builder - Builder for public API configuration
- Quality
Gate - Quality gate definition
- Quality
Gates Result - Quality gates evaluation result
- Range
Validator - Compile-time range validator
- Report
Config - Configuration for performance reporting
- Review
Criteria - Review criteria for contributions
- Runtime
Overhead - Safe
Memory Pool - Safe memory pool for efficient allocation with automatic cleanup
- Safe
Pooled Buffer - Safe pooled buffer with automatic return to pool on drop
- SafePtr
- Safe pointer wrapper that prevents raw pointer dereference
- Safe
Shared Model - Thread-safe reference counting for shared machine learning models
- Safety
Recommendation - Safety improvement recommendation
- Sample
Count - Type-safe sample count
- Sanitization
Config - Configuration for input sanitization
- Scikit
Learn Model - Generic scikit-learn compatible model wrapper
- Search
Query - Search
Result - Semantic
Search Engine - Similar
Trait - Streaming
Reader - Streaming reader for large datasets
- Tensor
Metadata - PyTorch-compatible tensor metadata
- Testing
Criteria - Testing criteria
- Timing
Statistics - Timing statistics for benchmark runs
- Trained
Mock Estimator - Trained mock estimator
- Trained
Parallel Ensemble - Trained parallel ensemble
- Training
State - Training state tracking
- Trait
Exploration Result - Result of trait exploration analysis
- Trait
Explorer - Main trait explorer for analyzing trait relationships and usage
- Trait
Graph - Trait
Graph Edge - Trait
Graph Generator - Trait
Graph Metadata - Trait
Graph Node - Trait
Performance Analyzer - Trait
Registry - Registry for managing trait information and relationships.
- Tutorial
- Tutorial
Builder - Tutorial
System - UIComponent
Builder - UI component builder for interactive elements
- Unsafe
Audit Config - Configuration for unsafe code auditing
- Unsafe
Audit Report - Result of unsafe code audit
- Unsafe
Auditor - Main unsafe code auditor
- Unsafe
Finding - Individual unsafe code finding
- Unsafe
Pattern - Pattern for safe unsafe code usage
- Unsafe
Validation Result - Result of unsafe code validation
- Usage
Example - Validated
Config - Configuration wrapper that tracks validation state at compile time
- Validation
Config - Validation configuration for code examples
- Validation
Context - Validation context for providing better error messages
- Validation
Rules - Container for multiple validation rules
- Wasm
Playground Manager - WebAssembly playground manager for browser-based code execution
- Workflow
Step - Individual workflow step
- Zero
Copy Dataset - Zero-copy features and target pair
Enums§
- Aggregation
Method - Methods for aggregating predictions
- Algorithm
Type - Types of machine learning algorithms
- Analysis
Type - Different types of performance analysis
- ApiStability
- API stability classification
- Base
Estimator Type - Types of base estimators
- Benchmark
Dataset - Dataset for benchmarking
- Binary
Size Impact - Relative impact on binary size
- Clippy
Level - Clippy compliance levels
- Compile
Time Impact - Relative impact on compile time
- Coverage
Tool - Supported coverage tools
- Data
Format - Supported data formats for reading and writing
- Data
Value - Value types supported in DataFrame
- Dependency
Category - Classification of dependency importance and usage
- Edge
Type - Ensemble
Type - Types of ensemble methods
- Example
Category - Example
Difficulty - Graph
Export Format - Export formats for graph visualizations
- Health
Status - Overall health status
- Issue
Severity - Severity level of formatting issues
- Mock
Behavior - Different mock behavior patterns
- Mock
Error Type - Types of errors that can be simulated
- Mock
Transform Type - Types of transformations to simulate
- Model
Format - Model format types
- Modular
Output Format - Supported output formats for API documentation
- Node
Role - Node roles in distributed training
- Output
Format - Output format options for reports
- Param
Value - Parameter value type for scikit-learn compatibility
- Quality
Gate Type - Types of quality gates
- Recommendation
Action - Types of recommendations
- Recommendation
Priority - Recommendation priority levels
- Regression
Threshold - Thresholds for detecting performance regressions
- Safety
Issue - Types of safety issues that can be found in input data
- Safety
Severity - Severity of safety concerns
- Sampling
Strategy - Sampling strategies for training data
- Sklears
Error - Main error type for sklears
- Time
Range - Time range for historical analysis
- Trait
Node Type - Trend
Direction - Performance trend direction
- Unsafe
Type - Type of unsafe operation
- Validation
Rule - Validation attributes for ML parameter constraints
- Voting
Strategy - Voting strategies for mock ensemble
- Zero
Copy Array - Zero-copy array wrapper that can hold either owned or borrowed data
Traits§
- Base
Estimator - Trait for base estimators in ensembles
- Compile
Time Validated - Trait for algorithms that support compile-time configuration validation
- Config
Validation - Configuration validation for complete ML algorithms
- Dimension
Validator - Trait for dimension validation at compile time
- Error
Context - Enhanced error context trait for better error propagation
- Estimator
- Base trait for all estimators with enhanced type safety
- Experimental
Api - Marker trait for experimental APIs
- Fit
- Enhanced trait for models that can be fitted to data
- FitPredict
- Trait for models that can be fitted and used for prediction in one step
- FitTransform
- Trait for transformers that can be fitted and transform in one step
- Float
Bounds - Floating point trait bounds for machine learning operations with enhanced constraints
- IntBounds
- Integer trait bounds for machine learning operations
- Model
Serialization - Generic model serialization interface
- Numeric
- Core numeric trait bounds for machine learning operations with SIMD support
- Parallel
Cross Validation - Trait for parallel cross-validation
- Parallel
Ensemble - Trait for parallel ensemble operations
- Parallel
Fit - Trait for parallel fitting operations
- Parallel
Predict - Trait for parallel prediction operations
- Parallel
Transform - Trait for parallel transformation operations
- Parameter
Validator - Trait for compile-time parameter validation
- Partial
Fit - Trait for models that support incremental/online learning
- Performance
Analyzer - Generic trait for performance analyzers
- Predict
- Enhanced trait for models that can make predictions
- Safe
Array Ops - Safe array operations trait
- Sanitize
- Trait for sanitizing input data
- Sklearn
Compatible - Trait for scikit-learn API compatibility
- Solver
Compatibility - Trait for solver compatibility validation
- Stable
Api - Marker trait for stable APIs
- Trained
Base Model - Trait for trained base models
- Transform
- Trait for models that can transform data
- Validate
- Core validation trait that can be derived for automatic parameter validation
- Zero
Copy - Trait for zero-copy conversion
Functions§
- api_
version_ info - Get current API version information
- calculate_
metrics - Calculate dependency tree metrics
- generate_
dependency_ graph - Generate dependency visualization (simplified DOT format)
- is_
api_ experimental - Check if an API is experimental
- is_
api_ stable - Check if an API is stable
- is_
ml_ data_ safe - Quick safety check for ML data
- load_
iris - Load the classic Iris dataset (subset for testing)
- make_
blobs - Generate synthetic classification dataset with Gaussian clusters
- make_
regression - Generate synthetic regression dataset
- ndarray_
to_ pytorch_ tensor - Convert ndarray to PyTorch tensor format
- sanitize_
ml_ data - Convenience functions for quick sanitization Sanitize machine learning input data
Type Aliases§
- Array1
- 1-dimensional array type alias
- Array2
- 2-dimensional array type alias
- Array
View1 - 1-dimensional array view type alias
- Array
View2 - 2-dimensional array view type alias
- Array
View Mut1 - 1-dimensional mutable array view type alias
- Array
View Mut2 - 2-dimensional mutable array view type alias
- CowFeatures
- Copy-on-write (Cow) variants for efficient memory usage Copy-on-write features matrix
- CowLabels
- Copy-on-write labels vector
- CowPredictions
- Copy-on-write predictions vector
- CowProbabilities
- Copy-on-write probabilities matrix
- CowSample
Weight - Copy-on-write sample weights vector
- CowTarget
- Copy-on-write target vector
- Distances
- Distance matrix type (n_samples x n_samples)
- Features
- Domain-specific type aliases for machine learning Feature matrix type (n_samples x n_features)
- Float
- Default floating point type for the library
- Int
- Default integer type for the library
- Labels
- Labels vector type (n_samples,)
- Predictions
- Predictions vector type (n_samples,)
- Probabilities
- Probability matrix type (n_samples x n_classes)
- Result
- Result type alias for sklears operations
- Sample
Weight - Sample weights type (n_samples,)
- Similarities
- Similarity matrix type (n_samples x n_samples)
- Target
- Target vector type (n_samples,)
- Zero
Copy Features - Zero
Copy Target