Crate sklears_svm

Crate sklears_svm 

Source
Expand description

Support Vector Machines for classification and regression

This module provides Support Vector Machine implementations including:

  • SVC: Support Vector Classification
  • SVR: Support Vector Regression
  • LinearSVC: Linear Support Vector Classification (coordinate descent)
  • LinearSVR: Linear Support Vector Regression (coordinate descent)
  • SGDClassifier: Stochastic Gradient Descent SVM for large-scale learning
  • NuSVC: Nu Support Vector Classification with automatic parameter selection
  • NuSVR: Nu Support Vector Regression
  • LSSVM: Least Squares Support Vector Machine for efficient training
  • RobustSVM: Robust SVM with Huber and other robust loss functions
  • OutlierResistantSVM: Outlier-resistant SVM with automatic outlier detection and handling
  • FuzzySVM: Fuzzy SVM for handling noisy and uncertain data
  • RankingSVM: Ranking SVM for learning-to-rank and structured output problems
  • OrdinalRegressionSVM: Ordinal regression SVM for ordered categorical targets
  • BinaryRelevanceSVM: Multi-label SVM using binary relevance strategy
  • ClassifierChainsSVM: Multi-label SVM using classifier chains
  • LabelPowersetSVM: Multi-label SVM using label powerset transformation
  • StructuredSVM: Structured SVM for sequence labeling and structured prediction
  • MetricLearningSVM: Metric learning SVM for learning optimal distance metrics
  • TransductiveSVM: Transductive SVM for semi-supervised learning with unlabeled data
  • SelfTrainingSVM: Self-training SVM for iterative semi-supervised learning
  • CoTrainingSVM: Co-training SVM using multiple views for semi-supervised learning
  • KernelPCA: Kernel Principal Component Analysis for dimensionality reduction
  • OnlineSVM: Online learning for streaming data
  • OutOfCoreSVM: Out-of-core training for datasets larger than memory
  • DistributedSVM: Distributed training across multiple processes/machines
  • AdaptiveSVM: Adaptive regularization with automatic parameter selection
  • ADMMSVM: Alternating Direction Method of Multipliers for distributed optimization
  • NewtonSVM: Newton methods for fast second-order optimization
  • GridSearchCV: Grid search for hyperparameter optimization
  • RandomSearchCV: Random search for hyperparameter optimization
  • BayesianOptimizationCV: Bayesian optimization for efficient hyperparameter tuning
  • Various kernel functions (Linear, RBF, Polynomial, Graph kernels, etc.)
  • SMO algorithm for training

Re-exports§

pub use errors::ErrorSeverity;
pub use errors::SVMError;
pub use errors::SVMResult;
pub use hyperparameter_optimization::BayesianOptimizationCV;
pub use hyperparameter_optimization::EvolutionaryOptimizationCV;
pub use hyperparameter_optimization::GridSearchCV;
pub use hyperparameter_optimization::OptimizationConfig;
pub use hyperparameter_optimization::OptimizationResult;
pub use hyperparameter_optimization::ParameterSet;
pub use hyperparameter_optimization::ParameterSpec;
pub use hyperparameter_optimization::RandomSearchCV;
pub use hyperparameter_optimization::ScoringMetric;
pub use hyperparameter_optimization::SearchSpace;
pub use adaptive_regularization::*;
pub use calibration::*;
pub use chunked_processing::*;
pub use compressed_kernels::*;
pub use computer_vision_kernels::*;
pub use crammer_singer::*;
pub use decomposition::*;
pub use distributed_svm::*;
pub use dual_coordinate_ascent::*;
pub use fuzzy_svm::*;
pub use gpu_kernels::*;
pub use graph_semi_supervised::*;
pub use group_lasso_svm::*;
pub use kernel_pca::*;
pub use kernels::*;
pub use linear_svc::*;
pub use linear_svr::*;
pub use ls_svm::*;
pub use memory_mapped_kernels::*;
pub use metric_learning_svm::*;
pub use multi_label_svm::*;
pub use multiclass::*;
pub use nusvc::*;
pub use nusvr::*;
pub use online_svm::*;
pub use ordinal_regression_svm::*;
pub use out_of_core_svm::*;
pub use outlier_resistant_svm::*;
pub use parallel_smo::*;
pub use primal_dual_methods::*;
pub use ranking_svm::*;
pub use regularization_path::*;
pub use robust_svm::*;
pub use sgd_svm::*;
pub use simd_kernels::*;
pub use smo::*;
pub use sparse_svm::*;
pub use structured_svm::*;
pub use svc::*;
pub use svr::*;
pub use text_classification::*;
pub use thread_safe_cache::*;
pub use time_series::*;
pub use topic_model_integration::*;
pub use visualization::*;

Modules§

adaptive_regularization
Adaptive Regularization Methods for SVMs
array_views
Zero-copy array views utilities
calibration
Probability calibration methods for SVM classifiers
chunked_processing
Chunked processing for large-scale SVM training
compressed_kernels
Compressed kernel representations for memory-efficient SVM training
computer_vision_kernels
Computer Vision Kernels for SVM
crammer_singer
Crammer-Singer multi-class SVM implementation
dataset_ops
Dataset operations with zero-copy semantics
decomposition
Decomposition methods for large-scale SVM optimization
distributed_svm
Distributed Support Vector Machine Training
dual_coordinate_ascent
Dual Coordinate Ascent algorithm for large-scale SVM training
errors
Comprehensive Error Types for SVM Operations
fuzzy_svm
Fuzzy Support Vector Machines for handling noisy and uncertain data
gpu_kernels
GPU-accelerated kernel computations using WGPU
graph_semi_supervised
Graph-based Semi-supervised Support Vector Machines
group_lasso_svm
Group Lasso Support Vector Machine for feature selection
hyperparameter_optimization
Hyperparameter optimization for SVM algorithms
kernel_pca
Kernel Principal Component Analysis (Kernel PCA) for non-linear dimensionality reduction
kernels
Kernel functions for Support Vector Machines
linear_svc
Linear Support Vector Classification using coordinate descent
linear_svr
Linear Support Vector Regression using coordinate descent
ls_svm
Least Squares Support Vector Machines (LS-SVM)
memory_mapped_kernels
Memory-mapped kernel matrices for large-scale SVM training
metric_learning_svm
Metric Learning Support Vector Machines
multi_label_svm
Multi-Label Support Vector Machines
multiclass
Multi-class SVM classification using One-vs-Rest and One-vs-One strategies
nusvc
Nu Support Vector Classification
nusvr
Nu Support Vector Regression
online_svm
Online SVM algorithms for streaming data and incremental learning
ordinal_regression_svm
Ordinal Regression Support Vector Machines
out_of_core_svm
Out-of-Core Support Vector Machine Training
outlier_resistant_svm
Outlier-Resistant Support Vector Machines
parallel_smo
Parallel Sequential Minimal Optimization (SMO) algorithm for SVM training
primal_dual_methods
Primal-Dual Methods for SVM Optimization
ranking_svm
Ranking Support Vector Machines for Learning-to-Rank
regularization_path
Regularization Path Algorithms for SVM
robust_svm
Robust Support Vector Machines with robust loss functions
sgd_svm
Stochastic Gradient Descent SVM implementations for large-scale learning
simd_kernels
SIMD-optimized kernel functions for enhanced performance
smo
Sequential Minimal Optimization (SMO) algorithm for SVM training
sparse_svm
Sparse Support Vector Machine with L1 regularization
structured_svm
Structured Support Vector Machines
svc
Support Vector Classification (SVC) implementation
svr
Support Vector Regression (SVR) implementation
text_classification
Text classification specific kernels and utilities for SVM
thread_safe_cache
Thread-safe kernel caching for parallel SVM processing
time_series
Time series kernels and utilities for SVM
topic_model_integration
Topic Model Integration for Text Classification SVM
validation_ml
ML-specific validation functions
visualization
Support Vector Machine Visualization Tools

Macros§

error_context
Macro for adding location context automatically

Structs§

AccuracyComparison
Accuracy comparison between sklears and reference implementation
AdvancedParallelEnsemble
Advanced parallel ensemble trainer
AlertConfig
Alert configuration
AlgorithmBenchmark
Algorithm benchmark definition
AlgorithmicCriteria
Algorithmic correctness criteria
AnalysisResult
Result from a performance analyzer
ApiVersionInfo
Information about API versions and compatibility
ArrayPool
Memory pool for efficient array allocation
ArrayStats
Advanced array statistics with optimized implementations
AutocompleteTrie
AutomatedBenchmarkRunner
Benchmark runner for automated CI/CD integration
BaseEstimatorConfig
Configuration for base estimators
BenchmarkConfig
Configuration for benchmark execution
BenchmarkResults
Results from running all benchmarks
BenchmarkRunResult
Result from a single benchmark run
BenchmarkSuite
Benchmark suite for running multiple algorithm comparisons
CICoverageResult
CI/CD coverage check result
CIDConfig
Configuration for CI/CD coverage checks
CodeFormatter
Main formatter for checking code quality
CodeQualityCriteria
Code quality criteria
CompilationImpact
ContributionChecker
Main contribution checker and validator
ContributionConfig
Configuration for contribution checking
ContributionResult
Result of contribution check
ContributionWorkflow
Contribution workflow helper
CoverageCI
CI/CD specific coverage functionality
CoverageCollector
Main code coverage collector and analyzer
CoverageConfig
Configuration for coverage collection and analysis
CoverageReport
Comprehensive coverage analysis report
CowDataset
Zero-copy features and target pair
CrossPlatformModel
Cross-platform model exchange format
CsvOptions
CSV-specific options
DataFrame
Pandas-compatible DataFrame structure
Dataset
A simple dataset structure for machine learning operations
DependencyAnalysis
DependencyAnalyzer
DependencyAudit
Main dependency audit system
DependencyInfo
Information about a dependency
DependencyRecommendation
Recommendation for dependency optimization
DependencyReport
Comprehensive dependency audit report
DistributedEnsemble
Distributed ensemble training (placeholder for future implementation)
DocumentFormatter
Document formatter for converting API references to various output formats
DocumentationCriteria
Documentation criteria
EnsembleConfig
Configuration for ensemble methods
EnsembleParallelConfig
Parallel training configuration
ErrorChain
Chain multiple errors together for better debugging
ExampleGenerator
ExampleValidator
Example validator for checking and validating code examples
ExplorerConfig
Configuration for the trait explorer with comprehensive options
FeatureCount
Type-safe feature count
FittedScikitLearnModel
Fitted scikit-learn compatible model
FormatDetector
Format detection utilities
FormatOptions
Format-specific options container
FormatReader
Generic format reader interface
FormatWriter
Generic format writer interface
FormattingConfig
Configuration for code formatting checks
FormattingConfigBuilder
Builder for creating formatting configurations
FormattingIssue
Individual formatting issue
FormattingReport
Result of formatting checks
GateResult
Result of individual quality gate
Hdf5Options
HDF5-specific options
InputSanitizer
Input sanitizer with configurable policies
JsonOptions
JSON-specific options
LearningPath
LinearRegressionConfig
Example validated configuration for linear regression
LinearRegressionConfigBuilder
Builder for LinearRegressionConfig with compile-time validation
LiveCodeRunner
Live code execution engine for interactive examples
MLFormattingRules
ML-specific formatting rules
MatrixOps
Advanced matrix operations with optimizations
MemoryFootprint
MemoryOps
Memory-efficient operations for large arrays
MemoryPoolStats
Statistics for memory pool usage
MemorySafety
Memory safety documentation and validation utilities
MemorySafetyGuarantee
Memory safety guarantee documentation
MemoryStatistics
Memory usage statistics
MockConfig
Configuration for mock estimator behavior
MockEnsemble
Mock ensemble for testing ensemble methods
MockEstimator
Mock estimator with configurable behavior for testing
MockEstimatorBuilder
Builder for configuring mock estimators
MockStateSnapshot
Snapshot of mock state for testing
MockTransformConfig
Configuration for mock transformer
MockTransformer
Mock transformer for testing transformation pipelines
MockTransformerBuilder
Builder for mock transformers
ModularApiReference
Complete API reference for a crate
ModularApiReferenceGenerator
Main API reference generator with comprehensive formatting capabilities
ModularCodeExample
Code example extracted from documentation
ModularCrossReferenceBuilder
Cross-reference builder for linking API elements
ModularGeneratorConfig
Configuration for the API reference generator
ModularTraitAnalyzer
Trait analyzer for extracting trait information from Rust code
ModularTraitInfo
Information about a trait
ModularTypeExtractor
Type extractor for analyzing type definitions from Rust code
ModularTypeInfo
Information about a type
NumpyArray
NumPy-compatible array wrapper
NumpyOptions
NumPy-specific options
ParallelConfig
Configuration for parallel operations
ParallelCrossValidator
Cross-validation utilities with parallel execution
ParallelEnsembleOps
Parallel ensemble operations
ParallelMatrixOps
Parallel matrix operations
ParquetOptions
Parquet-specific options
PerformanceAnalysis
PerformanceCriteria
Performance criteria
PerformanceReport
Complete performance report
PerformanceReporter
Main performance reporting and analysis system
PositiveValidator
Positive number validator
Probability
Type-safe probability value constrained to [0, 1]
ProbabilityValidator
Probability validator (0.0 to 1.0)
ProgressTracker
PublicApiConfig
Configuration for public APIs
PublicApiConfigBuilder
Builder for public API configuration
QualityGate
Quality gate definition
QualityGatesResult
Quality gates evaluation result
RangeValidator
Compile-time range validator
ReportConfig
Configuration for performance reporting
ReviewCriteria
Review criteria for contributions
RuntimeOverhead
SafeMemoryPool
Safe memory pool for efficient allocation with automatic cleanup
SafePooledBuffer
Safe pooled buffer with automatic return to pool on drop
SafePtr
Safe pointer wrapper that prevents raw pointer dereference
SafeSharedModel
Thread-safe reference counting for shared machine learning models
SafetyRecommendation
Safety improvement recommendation
SampleCount
Type-safe sample count
SanitizationConfig
Configuration for input sanitization
ScikitLearnModel
Generic scikit-learn compatible model wrapper
SearchQuery
SearchResult
SemanticSearchEngine
SimilarTrait
StreamingReader
Streaming reader for large datasets
TensorMetadata
PyTorch-compatible tensor metadata
TestingCriteria
Testing criteria
TimingStatistics
Timing statistics for benchmark runs
TrainedMockEstimator
Trained mock estimator
TrainedParallelEnsemble
Trained parallel ensemble
TrainingState
Training state tracking
TraitExplorationResult
Result of trait exploration analysis
TraitExplorer
Main trait explorer for analyzing trait relationships and usage
TraitGraph
TraitGraphEdge
TraitGraphGenerator
TraitGraphMetadata
TraitGraphNode
TraitPerformanceAnalyzer
TraitRegistry
Registry for managing trait information and relationships.
Tutorial
TutorialBuilder
TutorialSystem
UIComponentBuilder
UI component builder for interactive elements
UnsafeAuditConfig
Configuration for unsafe code auditing
UnsafeAuditReport
Result of unsafe code audit
UnsafeAuditor
Main unsafe code auditor
UnsafeFinding
Individual unsafe code finding
UnsafePattern
Pattern for safe unsafe code usage
UnsafeValidationResult
Result of unsafe code validation
UsageExample
ValidatedConfig
Configuration wrapper that tracks validation state at compile time
ValidationConfig
Validation configuration for code examples
ValidationContext
Validation context for providing better error messages
ValidationRules
Container for multiple validation rules
WasmPlaygroundManager
WebAssembly playground manager for browser-based code execution
WorkflowStep
Individual workflow step
ZeroCopyDataset
Zero-copy features and target pair

Enums§

AggregationMethod
Methods for aggregating predictions
AlgorithmType
Types of machine learning algorithms
AnalysisType
Different types of performance analysis
ApiStability
API stability classification
BaseEstimatorType
Types of base estimators
BenchmarkDataset
Dataset for benchmarking
BinarySizeImpact
Relative impact on binary size
ClippyLevel
Clippy compliance levels
CompileTimeImpact
Relative impact on compile time
CoverageTool
Supported coverage tools
DataFormat
Supported data formats for reading and writing
DataValue
Value types supported in DataFrame
DependencyCategory
Classification of dependency importance and usage
EdgeType
EnsembleType
Types of ensemble methods
ExampleCategory
ExampleDifficulty
GraphExportFormat
Export formats for graph visualizations
HealthStatus
Overall health status
IssueSeverity
Severity level of formatting issues
MockBehavior
Different mock behavior patterns
MockErrorType
Types of errors that can be simulated
MockTransformType
Types of transformations to simulate
ModelFormat
Model format types
ModularOutputFormat
Supported output formats for API documentation
NodeRole
Node roles in distributed training
OutputFormat
Output format options for reports
ParamValue
Parameter value type for scikit-learn compatibility
QualityGateType
Types of quality gates
RecommendationAction
Types of recommendations
RecommendationPriority
Recommendation priority levels
RegressionThreshold
Thresholds for detecting performance regressions
SafetyIssue
Types of safety issues that can be found in input data
SafetySeverity
Severity of safety concerns
SamplingStrategy
Sampling strategies for training data
SklearsError
Main error type for sklears
TimeRange
Time range for historical analysis
TraitNodeType
TrendDirection
Performance trend direction
UnsafeType
Type of unsafe operation
ValidationRule
Validation attributes for ML parameter constraints
VotingStrategy
Voting strategies for mock ensemble
ZeroCopyArray
Zero-copy array wrapper that can hold either owned or borrowed data

Traits§

BaseEstimator
Trait for base estimators in ensembles
CompileTimeValidated
Trait for algorithms that support compile-time configuration validation
ConfigValidation
Configuration validation for complete ML algorithms
DimensionValidator
Trait for dimension validation at compile time
ErrorContext
Enhanced error context trait for better error propagation
Estimator
Base trait for all estimators with enhanced type safety
ExperimentalApi
Marker trait for experimental APIs
Fit
Enhanced trait for models that can be fitted to data
FitPredict
Trait for models that can be fitted and used for prediction in one step
FitTransform
Trait for transformers that can be fitted and transform in one step
FloatBounds
Floating point trait bounds for machine learning operations with enhanced constraints
IntBounds
Integer trait bounds for machine learning operations
ModelSerialization
Generic model serialization interface
Numeric
Core numeric trait bounds for machine learning operations with SIMD support
ParallelCrossValidation
Trait for parallel cross-validation
ParallelEnsemble
Trait for parallel ensemble operations
ParallelFit
Trait for parallel fitting operations
ParallelPredict
Trait for parallel prediction operations
ParallelTransform
Trait for parallel transformation operations
ParameterValidator
Trait for compile-time parameter validation
PartialFit
Trait for models that support incremental/online learning
PerformanceAnalyzer
Generic trait for performance analyzers
Predict
Enhanced trait for models that can make predictions
SafeArrayOps
Safe array operations trait
Sanitize
Trait for sanitizing input data
SklearnCompatible
Trait for scikit-learn API compatibility
SolverCompatibility
Trait for solver compatibility validation
StableApi
Marker trait for stable APIs
TrainedBaseModel
Trait for trained base models
Transform
Trait for models that can transform data
Validate
Core validation trait that can be derived for automatic parameter validation
ZeroCopy
Trait for zero-copy conversion

Functions§

api_version_info
Get current API version information
calculate_metrics
Calculate dependency tree metrics
generate_dependency_graph
Generate dependency visualization (simplified DOT format)
is_api_experimental
Check if an API is experimental
is_api_stable
Check if an API is stable
is_ml_data_safe
Quick safety check for ML data
load_iris
Load the classic Iris dataset (subset for testing)
make_blobs
Generate synthetic classification dataset with Gaussian clusters
make_regression
Generate synthetic regression dataset
ndarray_to_pytorch_tensor
Convert ndarray to PyTorch tensor format
sanitize_ml_data
Convenience functions for quick sanitization Sanitize machine learning input data

Type Aliases§

Array1
1-dimensional array type alias
Array2
2-dimensional array type alias
ArrayView1
1-dimensional array view type alias
ArrayView2
2-dimensional array view type alias
ArrayViewMut1
1-dimensional mutable array view type alias
ArrayViewMut2
2-dimensional mutable array view type alias
CowFeatures
Copy-on-write (Cow) variants for efficient memory usage Copy-on-write features matrix
CowLabels
Copy-on-write labels vector
CowPredictions
Copy-on-write predictions vector
CowProbabilities
Copy-on-write probabilities matrix
CowSampleWeight
Copy-on-write sample weights vector
CowTarget
Copy-on-write target vector
Distances
Distance matrix type (n_samples x n_samples)
Features
Domain-specific type aliases for machine learning Feature matrix type (n_samples x n_features)
Float
Default floating point type for the library
Int
Default integer type for the library
Labels
Labels vector type (n_samples,)
Predictions
Predictions vector type (n_samples,)
Probabilities
Probability matrix type (n_samples x n_classes)
Result
Result type alias for sklears operations
SampleWeight
Sample weights type (n_samples,)
Similarities
Similarity matrix type (n_samples x n_samples)
Target
Target vector type (n_samples,)
ZeroCopyFeatures
ZeroCopyTarget