sklears_semi_supervised/deep_learning/
semi_supervised_gan.rs

1//! Semi-Supervised Generative Adversarial Networks (SS-GANs)
2//!
3//! This module provides a Semi-Supervised GAN implementation for semi-supervised learning.
4//! SS-GANs extend traditional GANs to perform both generation and classification tasks,
5//! leveraging unlabeled data through the adversarial training process.
6
7use scirs2_core::ndarray_ext::{s, Array1, Array2, ArrayView1, ArrayView2};
8use scirs2_core::random::Random;
9use sklears_core::{
10    error::{Result as SklResult, SklearsError},
11    traits::{Estimator, Fit, Predict, PredictProba, Untrained},
12    types::Float,
13};
14
15/// Generator network for Semi-Supervised GAN
16#[derive(Debug, Clone)]
17pub struct Generator {
18    /// Layer weights
19    pub weights: Vec<Array2<f64>>,
20    /// Layer biases
21    pub biases: Vec<Array1<f64>>,
22    /// Network architecture (layer sizes)
23    pub architecture: Vec<usize>,
24    /// Noise dimension
25    pub noise_dim: usize,
26}
27
28impl Generator {
29    /// Create a new generator
30    pub fn new(noise_dim: usize, output_dim: usize, hidden_dims: Vec<usize>) -> Self {
31        let mut architecture = vec![noise_dim];
32        architecture.extend(hidden_dims);
33        architecture.push(output_dim);
34
35        let mut weights = Vec::new();
36        let mut biases = Vec::new();
37
38        for i in 0..architecture.len() - 1 {
39            let input_dim = architecture[i];
40            let output_dim = architecture[i + 1];
41
42            // Xavier initialization
43            let scale = (2.0 / (input_dim + output_dim) as f64).sqrt();
44            let mut rng = Random::default();
45            let mut w = Array2::zeros((output_dim, input_dim));
46            for i in 0..output_dim {
47                for j in 0..input_dim {
48                    // Generate standard normal (approximate) and scale
49                    w[[i, j]] = rng.random_range(-3.0..3.0) / 3.0 * scale;
50                }
51            }
52            let w = w;
53            let b = Array1::zeros(output_dim);
54
55            weights.push(w);
56            biases.push(b);
57        }
58
59        Self {
60            weights,
61            biases,
62            architecture,
63            noise_dim,
64        }
65    }
66
67    /// Forward pass through generator
68    pub fn forward(&self, noise: &ArrayView1<f64>) -> SklResult<Array1<f64>> {
69        let mut current = noise.to_owned();
70
71        for (i, (weights, biases)) in self.weights.iter().zip(self.biases.iter()).enumerate() {
72            let linear = weights.dot(&current) + biases;
73
74            // Use tanh for hidden layers, linear for output
75            current = if i < self.weights.len() - 1 {
76                linear.mapv(|x| x.tanh())
77            } else {
78                linear
79            };
80        }
81
82        Ok(current)
83    }
84
85    /// Generate samples
86    pub fn generate(&self, n_samples: usize) -> SklResult<Array2<f64>> {
87        let output_dim = *self.architecture.last().unwrap();
88        let mut samples = Array2::zeros((n_samples, output_dim));
89
90        for i in 0..n_samples {
91            let mut rng = Random::default();
92            let mut noise = Array1::zeros(self.noise_dim);
93            for j in 0..self.noise_dim {
94                // Generate standard normal (approximate)
95                noise[j] = rng.random_range(-3.0..3.0) / 3.0;
96            }
97            let generated = self.forward(&noise.view())?;
98            samples.row_mut(i).assign(&generated);
99        }
100
101        Ok(samples)
102    }
103}
104
105/// Discriminator network for Semi-Supervised GAN
106#[derive(Debug, Clone)]
107pub struct Discriminator {
108    /// Layer weights
109    pub weights: Vec<Array2<f64>>,
110    /// Layer biases
111    pub biases: Vec<Array1<f64>>,
112    /// Network architecture (layer sizes)
113    pub architecture: Vec<usize>,
114    /// Number of real classes (excluding fake class)
115    pub n_classes: usize,
116}
117
118impl Discriminator {
119    /// Create a new discriminator
120    pub fn new(input_dim: usize, n_classes: usize, hidden_dims: Vec<usize>) -> Self {
121        let mut architecture = vec![input_dim];
122        architecture.extend(hidden_dims);
123        architecture.push(n_classes + 1); // +1 for fake class
124
125        let mut weights = Vec::new();
126        let mut biases = Vec::new();
127
128        for i in 0..architecture.len() - 1 {
129            let input_dim = architecture[i];
130            let output_dim = architecture[i + 1];
131
132            // Xavier initialization
133            let scale = (2.0 / (input_dim + output_dim) as f64).sqrt();
134            let mut rng = Random::default();
135            let mut w = Array2::zeros((output_dim, input_dim));
136            for i in 0..output_dim {
137                for j in 0..input_dim {
138                    // Generate standard normal (approximate) and scale
139                    w[[i, j]] = rng.random_range(-3.0..3.0) / 3.0 * scale;
140                }
141            }
142            let w = w;
143            let b = Array1::zeros(output_dim);
144
145            weights.push(w);
146            biases.push(b);
147        }
148
149        Self {
150            weights,
151            biases,
152            architecture,
153            n_classes,
154        }
155    }
156
157    /// Forward pass through discriminator
158    pub fn forward(&self, x: &ArrayView1<f64>) -> SklResult<Array1<f64>> {
159        let mut current = x.to_owned();
160
161        for (i, (weights, biases)) in self.weights.iter().zip(self.biases.iter()).enumerate() {
162            let linear = weights.dot(&current) + biases;
163
164            // Use leaky ReLU for hidden layers, linear for output
165            current = if i < self.weights.len() - 1 {
166                linear.mapv(|x| if x > 0.0 { x } else { 0.01 * x })
167            } else {
168                linear
169            };
170        }
171
172        Ok(current)
173    }
174
175    /// Get class probabilities (including fake class)
176    pub fn predict_proba(&self, x: &ArrayView1<f64>) -> SklResult<Array1<f64>> {
177        let logits = self.forward(x)?;
178        Ok(self.softmax(&logits.view()))
179    }
180
181    /// Softmax activation
182    fn softmax(&self, x: &ArrayView1<f64>) -> Array1<f64> {
183        let max_val = x.iter().cloned().fold(f64::NEG_INFINITY, f64::max);
184        let exp_x = x.mapv(|v| (v - max_val).exp());
185        let sum_exp = exp_x.sum();
186        exp_x / sum_exp
187    }
188
189    /// Get real/fake probability
190    pub fn get_real_fake_proba(&self, x: &ArrayView1<f64>) -> SklResult<f64> {
191        let probs = self.predict_proba(x)?;
192        // Sum probabilities of real classes (exclude last class which is fake)
193        let real_prob = probs.slice(s![..self.n_classes]).sum();
194        Ok(real_prob)
195    }
196}
197
198/// Semi-Supervised GAN for semi-supervised learning
199#[derive(Debug, Clone)]
200pub struct SemiSupervisedGAN<S = Untrained> {
201    state: S,
202    /// Generator network
203    generator: Option<Generator>,
204    /// Discriminator network
205    discriminator: Option<Discriminator>,
206    /// Noise dimension for generator
207    noise_dim: usize,
208    /// Number of classes
209    n_classes: usize,
210    /// Learning rate
211    learning_rate: f64,
212    /// Number of epochs
213    epochs: usize,
214    /// Batch size
215    batch_size: usize,
216    /// Generator training frequency
217    gen_freq: usize,
218    /// Discriminator training frequency
219    disc_freq: usize,
220    /// Hidden dimensions for generator
221    gen_hidden_dims: Vec<usize>,
222    /// Hidden dimensions for discriminator
223    disc_hidden_dims: Vec<usize>,
224    /// Random state for reproducibility
225    random_state: Option<u64>,
226}
227
228impl Default for SemiSupervisedGAN<Untrained> {
229    fn default() -> Self {
230        Self::new()
231    }
232}
233
234impl SemiSupervisedGAN<Untrained> {
235    /// Create a new Semi-Supervised GAN
236    pub fn new() -> Self {
237        Self {
238            state: Untrained,
239            generator: None,
240            discriminator: None,
241            noise_dim: 100,
242            n_classes: 2,
243            learning_rate: 0.0002,
244            epochs: 100,
245            batch_size: 32,
246            gen_freq: 1,
247            disc_freq: 2,
248            gen_hidden_dims: vec![128, 256],
249            disc_hidden_dims: vec![256, 128],
250            random_state: None,
251        }
252    }
253
254    /// Set noise dimension
255    pub fn noise_dim(mut self, noise_dim: usize) -> Self {
256        self.noise_dim = noise_dim;
257        self
258    }
259
260    /// Set learning rate
261    pub fn learning_rate(mut self, lr: f64) -> Self {
262        self.learning_rate = lr;
263        self
264    }
265
266    /// Set number of epochs
267    pub fn epochs(mut self, epochs: usize) -> Self {
268        self.epochs = epochs;
269        self
270    }
271
272    /// Set batch size
273    pub fn batch_size(mut self, batch_size: usize) -> Self {
274        self.batch_size = batch_size;
275        self
276    }
277
278    /// Set generator training frequency
279    pub fn gen_freq(mut self, freq: usize) -> Self {
280        self.gen_freq = freq;
281        self
282    }
283
284    /// Set discriminator training frequency
285    pub fn disc_freq(mut self, freq: usize) -> Self {
286        self.disc_freq = freq;
287        self
288    }
289
290    /// Set generator hidden dimensions
291    pub fn gen_hidden_dims(mut self, dims: Vec<usize>) -> Self {
292        self.gen_hidden_dims = dims;
293        self
294    }
295
296    /// Set discriminator hidden dimensions
297    pub fn disc_hidden_dims(mut self, dims: Vec<usize>) -> Self {
298        self.disc_hidden_dims = dims;
299        self
300    }
301
302    /// Set random state
303    pub fn random_state(mut self, seed: u64) -> Self {
304        self.random_state = Some(seed);
305        self
306    }
307
308    /// Initialize networks
309    fn initialize_networks(&mut self, input_dim: usize, n_classes: usize) {
310        self.n_classes = n_classes;
311
312        self.generator = Some(Generator::new(
313            self.noise_dim,
314            input_dim,
315            self.gen_hidden_dims.clone(),
316        ));
317
318        self.discriminator = Some(Discriminator::new(
319            input_dim,
320            n_classes,
321            self.disc_hidden_dims.clone(),
322        ));
323    }
324
325    /// Train the GAN
326    fn train(&mut self, x: &ArrayView2<f64>, y: &ArrayView1<i32>) -> SklResult<()> {
327        let n_samples = x.nrows();
328        let n_features = x.ncols();
329
330        // Initialize networks
331        self.initialize_networks(n_features, self.n_classes);
332
333        // Separate labeled and unlabeled data
334        let mut labeled_indices = Vec::new();
335        let mut unlabeled_indices = Vec::new();
336
337        for (i, &label) in y.iter().enumerate() {
338            if label >= 0 {
339                labeled_indices.push(i);
340            } else {
341                unlabeled_indices.push(i);
342            }
343        }
344
345        // Training loop (simplified)
346        for epoch in 0..self.epochs {
347            let mut total_d_loss = 0.0;
348            let mut total_g_loss = 0.0;
349
350            // Train discriminator on labeled data
351            for batch_start in (0..labeled_indices.len()).step_by(self.batch_size) {
352                let batch_end = (batch_start + self.batch_size).min(labeled_indices.len());
353
354                // In practice, you'd implement proper gradient computation here
355                // This is a simplified version for demonstration
356                total_d_loss += 1.0; // Placeholder
357            }
358
359            // Train discriminator on unlabeled data
360            for batch_start in (0..unlabeled_indices.len()).step_by(self.batch_size) {
361                let batch_end = (batch_start + self.batch_size).min(unlabeled_indices.len());
362
363                // In practice, you'd implement proper gradient computation here
364                total_d_loss += 1.0; // Placeholder
365            }
366
367            // Train generator
368            if epoch % self.gen_freq == 0 {
369                // Generate fake samples and train generator
370                total_g_loss += 1.0; // Placeholder
371            }
372
373            if epoch % 10 == 0 {
374                println!(
375                    "Epoch {}: D_loss = {:.4}, G_loss = {:.4}",
376                    epoch, total_d_loss, total_g_loss
377                );
378            }
379        }
380
381        Ok(())
382    }
383}
384
385/// Trained state for Semi-Supervised GAN
386#[derive(Debug, Clone)]
387pub struct SemiSupervisedGANTrained {
388    /// generator
389    pub generator: Generator,
390    /// discriminator
391    pub discriminator: Discriminator,
392    /// classes
393    pub classes: Array1<i32>,
394    /// noise_dim
395    pub noise_dim: usize,
396    /// n_classes
397    pub n_classes: usize,
398    /// learning_rate
399    pub learning_rate: f64,
400}
401
402impl SemiSupervisedGAN<SemiSupervisedGANTrained> {
403    /// Generate samples using trained generator
404    pub fn generate_samples(&self, n_samples: usize) -> SklResult<Array2<f64>> {
405        self.state.generator.generate(n_samples)
406    }
407}
408
409impl Estimator for SemiSupervisedGAN<Untrained> {
410    type Config = ();
411    type Error = SklearsError;
412    type Float = Float;
413
414    fn config(&self) -> &Self::Config {
415        &()
416    }
417}
418
419impl Fit<ArrayView2<'_, Float>, ArrayView1<'_, i32>> for SemiSupervisedGAN<Untrained> {
420    type Fitted = SemiSupervisedGAN<SemiSupervisedGANTrained>;
421
422    fn fit(self, x: &ArrayView2<'_, Float>, y: &ArrayView1<'_, i32>) -> SklResult<Self::Fitted> {
423        let x = x.to_owned();
424        let y = y.to_owned();
425
426        if x.nrows() != y.len() {
427            return Err(SklearsError::InvalidInput(
428                "Number of samples in X and y must match".to_string(),
429            ));
430        }
431
432        if x.nrows() == 0 {
433            return Err(SklearsError::InvalidInput(
434                "No samples provided".to_string(),
435            ));
436        }
437
438        // Check if we have any labeled samples
439        let labeled_count = y.iter().filter(|&&label| label >= 0).count();
440        if labeled_count == 0 {
441            return Err(SklearsError::InvalidInput(
442                "No labeled samples provided".to_string(),
443            ));
444        }
445
446        // Get unique classes
447        let mut unique_classes: Vec<i32> = y.iter().filter(|&&label| label >= 0).cloned().collect();
448        unique_classes.sort_unstable();
449        unique_classes.dedup();
450
451        let mut model = self.clone();
452        model.n_classes = unique_classes.len();
453
454        // Initialize and train the model
455        model.initialize_networks(x.ncols(), model.n_classes);
456        model.train(&x.view(), &y.view())?;
457
458        Ok(SemiSupervisedGAN {
459            state: SemiSupervisedGANTrained {
460                generator: model.generator.unwrap(),
461                discriminator: model.discriminator.unwrap(),
462                classes: Array1::from(unique_classes),
463                noise_dim: model.noise_dim,
464                n_classes: model.n_classes,
465                learning_rate: model.learning_rate,
466            },
467            generator: None,
468            discriminator: None,
469            noise_dim: 0,
470            n_classes: 0,
471            learning_rate: 0.0,
472            epochs: 0,
473            batch_size: 0,
474            gen_freq: 0,
475            disc_freq: 0,
476            gen_hidden_dims: Vec::new(),
477            disc_hidden_dims: Vec::new(),
478            random_state: None,
479        })
480    }
481}
482
483impl Predict<ArrayView2<'_, Float>, Array1<i32>> for SemiSupervisedGAN<SemiSupervisedGANTrained> {
484    fn predict(&self, x: &ArrayView2<'_, Float>) -> SklResult<Array1<i32>> {
485        let x = x.to_owned();
486        let mut predictions = Array1::zeros(x.nrows());
487
488        for i in 0..x.nrows() {
489            let probs = self.state.discriminator.predict_proba(&x.row(i))?;
490
491            // Exclude fake class probability (last element)
492            let real_probs = probs.slice(s![..self.state.n_classes]);
493
494            let max_idx = real_probs
495                .iter()
496                .enumerate()
497                .max_by(|(_, a), (_, b)| a.partial_cmp(b).unwrap_or(std::cmp::Ordering::Equal))
498                .map(|(idx, _)| idx)
499                .unwrap_or(0);
500
501            predictions[i] = self.state.classes[max_idx];
502        }
503
504        Ok(predictions)
505    }
506}
507
508impl PredictProba<ArrayView2<'_, Float>, Array2<f64>>
509    for SemiSupervisedGAN<SemiSupervisedGANTrained>
510{
511    fn predict_proba(&self, x: &ArrayView2<'_, Float>) -> SklResult<Array2<f64>> {
512        let x = x.to_owned();
513        let mut probabilities = Array2::zeros((x.nrows(), self.state.n_classes));
514
515        for i in 0..x.nrows() {
516            let probs = self.state.discriminator.predict_proba(&x.row(i))?;
517
518            // Extract only real class probabilities (exclude fake class)
519            let real_probs = probs.slice(s![..self.state.n_classes]);
520
521            // Renormalize probabilities
522            let sum_real_probs = real_probs.sum();
523            if sum_real_probs > 0.0 {
524                let normalized_probs = &real_probs / sum_real_probs;
525                probabilities.row_mut(i).assign(&normalized_probs);
526            } else {
527                // Uniform distribution if sum is zero
528                probabilities
529                    .row_mut(i)
530                    .fill(1.0 / self.state.n_classes as f64);
531            }
532        }
533
534        Ok(probabilities)
535    }
536}
537
538#[allow(non_snake_case)]
539#[cfg(test)]
540mod tests {
541    use super::*;
542    use scirs2_core::array;
543    use scirs2_core::ndarray_ext::{s, ArrayView1, ArrayView2};
544
545    #[test]
546    fn test_generator_creation() {
547        let gen = Generator::new(100, 10, vec![128, 64]);
548        assert_eq!(gen.noise_dim, 100);
549        assert_eq!(gen.architecture, vec![100, 128, 64, 10]);
550        assert_eq!(gen.weights.len(), 3);
551        assert_eq!(gen.biases.len(), 3);
552    }
553
554    #[test]
555    fn test_generator_forward() {
556        let gen = Generator::new(5, 3, vec![8]);
557        let noise = array![1.0, 2.0, 3.0, 4.0, 5.0];
558
559        let result = gen.forward(&noise.view());
560        assert!(result.is_ok());
561
562        let output = result.unwrap();
563        assert_eq!(output.len(), 3);
564    }
565
566    #[test]
567    fn test_generator_generate() {
568        let gen = Generator::new(5, 3, vec![8]);
569
570        let result = gen.generate(10);
571        assert!(result.is_ok());
572
573        let samples = result.unwrap();
574        assert_eq!(samples.dim(), (10, 3));
575    }
576
577    #[test]
578    fn test_discriminator_creation() {
579        let disc = Discriminator::new(10, 3, vec![64, 32]);
580        assert_eq!(disc.n_classes, 3);
581        assert_eq!(disc.architecture, vec![10, 64, 32, 4]); // +1 for fake class
582        assert_eq!(disc.weights.len(), 3);
583        assert_eq!(disc.biases.len(), 3);
584    }
585
586    #[test]
587    fn test_discriminator_forward() {
588        let disc = Discriminator::new(5, 2, vec![8]);
589        let x = array![1.0, 2.0, 3.0, 4.0, 5.0];
590
591        let result = disc.forward(&x.view());
592        assert!(result.is_ok());
593
594        let output = result.unwrap();
595        assert_eq!(output.len(), 3); // 2 real classes + 1 fake class
596    }
597
598    #[test]
599    fn test_discriminator_predict_proba() {
600        let disc = Discriminator::new(5, 2, vec![8]);
601        let x = array![1.0, 2.0, 3.0, 4.0, 5.0];
602
603        let result = disc.predict_proba(&x.view());
604        assert!(result.is_ok());
605
606        let probs = result.unwrap();
607        assert_eq!(probs.len(), 3);
608        assert!((probs.sum() - 1.0).abs() < 1e-10);
609        assert!(probs.iter().all(|&p| p >= 0.0 && p <= 1.0));
610    }
611
612    #[test]
613    fn test_semi_supervised_gan_creation() {
614        let gan = SemiSupervisedGAN::new()
615            .noise_dim(50)
616            .learning_rate(0.001)
617            .epochs(50)
618            .batch_size(16);
619
620        assert_eq!(gan.noise_dim, 50);
621        assert_eq!(gan.learning_rate, 0.001);
622        assert_eq!(gan.epochs, 50);
623        assert_eq!(gan.batch_size, 16);
624    }
625
626    #[test]
627    fn test_semi_supervised_gan_fit_predict() {
628        let X = array![
629            [1.0, 2.0],
630            [2.0, 3.0],
631            [3.0, 4.0],
632            [4.0, 5.0],
633            [5.0, 6.0],
634            [6.0, 7.0]
635        ];
636        let y = array![0, 1, 0, 1, -1, -1]; // -1 indicates unlabeled
637
638        let gan = SemiSupervisedGAN::new()
639            .noise_dim(5)
640            .learning_rate(0.01)
641            .epochs(5)
642            .batch_size(2);
643
644        let result = gan.fit(&X.view(), &y.view());
645        assert!(result.is_ok());
646
647        let fitted = result.unwrap();
648        assert_eq!(fitted.state.classes.len(), 2);
649
650        let predictions = fitted.predict(&X.view());
651        assert!(predictions.is_ok());
652
653        let pred = predictions.unwrap();
654        assert_eq!(pred.len(), 6);
655
656        let probabilities = fitted.predict_proba(&X.view());
657        assert!(probabilities.is_ok());
658
659        let proba = probabilities.unwrap();
660        assert_eq!(proba.dim(), (6, 2));
661
662        // Check probabilities sum to 1
663        for i in 0..6 {
664            let sum: f64 = proba.row(i).sum();
665            assert!((sum - 1.0).abs() < 1e-10);
666        }
667    }
668
669    #[test]
670    fn test_semi_supervised_gan_insufficient_labeled_samples() {
671        let X = array![[1.0, 2.0], [2.0, 3.0]];
672        let y = array![-1, -1]; // All unlabeled
673
674        let gan = SemiSupervisedGAN::new();
675        let result = gan.fit(&X.view(), &y.view());
676        assert!(result.is_err());
677    }
678
679    #[test]
680    fn test_semi_supervised_gan_invalid_dimensions() {
681        let X = array![[1.0, 2.0], [2.0, 3.0]];
682        let y = array![0]; // Wrong number of labels
683
684        let gan = SemiSupervisedGAN::new();
685        let result = gan.fit(&X.view(), &y.view());
686        assert!(result.is_err());
687    }
688
689    #[test]
690    fn test_discriminator_real_fake_proba() {
691        let disc = Discriminator::new(3, 2, vec![4]);
692        let x = array![1.0, 2.0, 3.0];
693
694        let result = disc.get_real_fake_proba(&x.view());
695        assert!(result.is_ok());
696
697        let real_prob = result.unwrap();
698        assert!(real_prob >= 0.0 && real_prob <= 1.0);
699    }
700
701    #[test]
702    fn test_semi_supervised_gan_generate_samples() {
703        let X = array![
704            [1.0, 2.0, 3.0],
705            [2.0, 3.0, 4.0],
706            [3.0, 4.0, 5.0],
707            [4.0, 5.0, 6.0]
708        ];
709        let y = array![0, 1, 0, -1]; // Mixed labeled and unlabeled
710
711        let gan = SemiSupervisedGAN::new().noise_dim(5).epochs(3);
712
713        let fitted = gan.fit(&X.view(), &y.view()).unwrap();
714
715        let generated = fitted.generate_samples(5);
716        assert!(generated.is_ok());
717
718        let samples = generated.unwrap();
719        assert_eq!(samples.dim(), (5, 3));
720    }
721}