sklears_semi_supervised/deep_learning/
neural_ode.rs

1//! Neural Ordinary Differential Equations for Semi-Supervised Learning
2//!
3//! This module provides a Neural ODE implementation for semi-supervised learning.
4//! Neural ODEs use neural networks to model continuous dynamics and can learn
5//! rich representations that evolve over time.
6
7use scirs2_core::ndarray_ext::{Array1, Array2, ArrayView1, ArrayView2};
8use scirs2_core::random::Random;
9use sklears_core::{
10    error::{Result as SklResult, SklearsError},
11    traits::{Estimator, Fit, Predict, PredictProba, Untrained},
12    types::Float,
13};
14
15/// Neural ODE layer for modeling continuous dynamics
16#[derive(Debug, Clone)]
17pub struct NeuralODELayer {
18    /// Layer weights
19    pub weights: Array2<f64>,
20    /// Layer biases
21    pub biases: Array1<f64>,
22    /// Integration time steps
23    pub integration_steps: usize,
24    /// Step size for ODE integration
25    pub step_size: f64,
26    /// Solver method
27    pub solver: String,
28}
29
30impl NeuralODELayer {
31    /// Create a new Neural ODE layer
32    pub fn new(
33        input_dim: usize,
34        hidden_dim: usize,
35        integration_steps: usize,
36        step_size: f64,
37    ) -> Self {
38        // For Neural ODEs, we typically want to preserve dimension or have output same as input
39        // Let's use input_dim for both input and output to keep things simple
40        let mut rng = Random::default();
41        let mut weights = Array2::zeros((input_dim, input_dim));
42        for i in 0..input_dim {
43            for j in 0..input_dim {
44                weights[[i, j]] = rng.random_range(-3.0..3.0) / 3.0 * 0.1;
45            }
46        }
47        let biases = Array1::zeros(input_dim);
48
49        Self {
50            weights,
51            biases,
52            integration_steps,
53            step_size,
54            solver: "euler".to_string(),
55        }
56    }
57
58    /// Set solver method
59    pub fn solver(mut self, solver: String) -> Self {
60        self.solver = solver;
61        self
62    }
63
64    /// Forward pass through the Neural ODE layer
65    pub fn forward(&self, x: &ArrayView1<f64>) -> SklResult<Array1<f64>> {
66        let mut state = x.to_owned();
67
68        for _ in 0..self.integration_steps {
69            let derivative = self.compute_derivative(&state.view())?;
70            state = self.integrate_step(&state.view(), &derivative.view())?;
71        }
72
73        Ok(state)
74    }
75
76    /// Compute derivative for ODE integration
77    fn compute_derivative(&self, x: &ArrayView1<f64>) -> SklResult<Array1<f64>> {
78        if x.len() != self.weights.ncols() {
79            return Err(SklearsError::InvalidInput(format!(
80                "Input dimension {} doesn't match weights {}",
81                x.len(),
82                self.weights.ncols()
83            )));
84        }
85
86        // Neural network forward pass: f(x) = tanh(Wx + b)
87        let linear = self.weights.dot(x) + &self.biases;
88        let nonlinear = linear.mapv(|x| x.tanh());
89
90        Ok(nonlinear)
91    }
92
93    /// Integrate one step using the specified solver
94    fn integrate_step(&self, x: &ArrayView1<f64>, dx: &ArrayView1<f64>) -> SklResult<Array1<f64>> {
95        match self.solver.as_str() {
96            "euler" => {
97                // Euler method: x_{t+1} = x_t + h * f(x_t)
98                Ok(x + &(dx * self.step_size))
99            }
100            "rk4" => {
101                // 4th order Runge-Kutta method
102                let k1 = dx * self.step_size;
103
104                let x_plus_k1_half = x + &(&k1 * 0.5);
105                let k2 = self.compute_derivative(&x_plus_k1_half.view())? * self.step_size;
106
107                let x_plus_k2_half = x + &(&k2 * 0.5);
108                let k3 = self.compute_derivative(&x_plus_k2_half.view())? * self.step_size;
109
110                let x_plus_k3 = x + &k3;
111                let k4 = self.compute_derivative(&x_plus_k3.view())? * self.step_size;
112
113                Ok(x + &(&k1 + &k2 * 2.0 + &k3 * 2.0 + &k4) * (1.0 / 6.0))
114            }
115            _ => Err(SklearsError::InvalidInput(format!(
116                "Unknown solver: {}",
117                self.solver
118            ))),
119        }
120    }
121
122    /// Backward pass (simplified - approximate gradients)
123    pub fn backward(
124        &mut self,
125        x: &ArrayView1<f64>,
126        grad_output: &ArrayView1<f64>,
127    ) -> SklResult<Array1<f64>> {
128        // Simplified backward pass using finite differences
129        let epsilon = 1e-6;
130        let mut grad_input = Array1::zeros(x.len());
131
132        for i in 0..x.len() {
133            let mut x_plus = x.to_owned();
134            let mut x_minus = x.to_owned();
135            x_plus[i] += epsilon;
136            x_minus[i] -= epsilon;
137
138            let out_plus = self.forward(&x_plus.view())?;
139            let out_minus = self.forward(&x_minus.view())?;
140
141            let grad_i = grad_output.dot(&((&out_plus - &out_minus) / (2.0 * epsilon)));
142            grad_input[i] = grad_i;
143        }
144
145        Ok(grad_input)
146    }
147}
148
149/// Neural ODE for semi-supervised learning
150#[derive(Debug, Clone)]
151pub struct NeuralODE<S = Untrained> {
152    state: S,
153    /// Neural ODE layers
154    layers: Vec<NeuralODELayer>,
155    /// Classification layer weights
156    classifier_weights: Option<Array2<f64>>,
157    /// Classification layer biases
158    classifier_biases: Option<Array1<f64>>,
159    /// Number of classes
160    n_classes: usize,
161    /// Learning rate
162    learning_rate: f64,
163    /// Maximum number of iterations
164    max_iter: usize,
165    /// Regularization parameter
166    reg_param: f64,
167    /// Integration steps
168    integration_steps: usize,
169    /// Step size for ODE integration
170    step_size: f64,
171    /// Solver method
172    solver: String,
173    /// Random state for reproducibility
174    random_state: Option<u64>,
175}
176
177impl Default for NeuralODE<Untrained> {
178    fn default() -> Self {
179        Self::new()
180    }
181}
182
183impl NeuralODE<Untrained> {
184    /// Create a new Neural ODE
185    pub fn new() -> Self {
186        Self {
187            state: Untrained,
188            layers: Vec::new(),
189            classifier_weights: None,
190            classifier_biases: None,
191            n_classes: 2,
192            learning_rate: 0.01,
193            max_iter: 100,
194            reg_param: 0.01,
195            integration_steps: 10,
196            step_size: 0.1,
197            solver: "euler".to_string(),
198            random_state: None,
199        }
200    }
201
202    /// Set learning rate
203    pub fn learning_rate(mut self, lr: f64) -> Self {
204        self.learning_rate = lr;
205        self
206    }
207
208    /// Set maximum iterations
209    pub fn max_iter(mut self, max_iter: usize) -> Self {
210        self.max_iter = max_iter;
211        self
212    }
213
214    /// Set regularization parameter
215    pub fn reg_param(mut self, reg_param: f64) -> Self {
216        self.reg_param = reg_param;
217        self
218    }
219
220    /// Set integration steps
221    pub fn integration_steps(mut self, steps: usize) -> Self {
222        self.integration_steps = steps;
223        self
224    }
225
226    /// Set step size
227    pub fn step_size(mut self, step_size: f64) -> Self {
228        self.step_size = step_size;
229        self
230    }
231
232    /// Set solver method
233    pub fn solver(mut self, solver: String) -> Self {
234        self.solver = solver;
235        self
236    }
237
238    /// Set random state
239    pub fn random_state(mut self, seed: u64) -> Self {
240        self.random_state = Some(seed);
241        self
242    }
243
244    /// Add a Neural ODE layer
245    pub fn add_layer(&mut self, input_dim: usize, hidden_dim: usize) {
246        let layer = NeuralODELayer::new(
247            input_dim,
248            hidden_dim,
249            self.integration_steps,
250            self.step_size,
251        )
252        .solver(self.solver.clone());
253        self.layers.push(layer);
254    }
255
256    /// Initialize classifier
257    fn initialize_classifier(&mut self, input_dim: usize, n_classes: usize) {
258        self.classifier_weights = Some({
259            let mut rng = Random::default();
260            let mut w = Array2::zeros((n_classes, input_dim));
261            for i in 0..n_classes {
262                for j in 0..input_dim {
263                    w[[i, j]] = rng.random_range(-3.0..3.0) / 3.0 * 0.1;
264                }
265            }
266            w
267        });
268        self.classifier_biases = Some(Array1::zeros(n_classes));
269    }
270}
271
272/// Trained state for Neural ODE
273#[derive(Debug, Clone)]
274pub struct NeuralODETrained {
275    /// layers
276    pub layers: Vec<NeuralODELayer>,
277    /// classifier_weights
278    pub classifier_weights: Array2<f64>,
279    /// classifier_biases
280    pub classifier_biases: Array1<f64>,
281    /// classes
282    pub classes: Array1<i32>,
283    /// learning_rate
284    pub learning_rate: f64,
285    /// max_iter
286    pub max_iter: usize,
287    /// reg_param
288    pub reg_param: f64,
289    /// integration_steps
290    pub integration_steps: usize,
291    /// step_size
292    pub step_size: f64,
293    /// solver
294    pub solver: String,
295}
296
297impl<S> NeuralODE<S> {
298    /// Forward pass through all layers
299    fn forward(&self, x: &ArrayView1<f64>) -> SklResult<Array1<f64>> {
300        let mut current = x.to_owned();
301
302        for layer in &self.layers {
303            current = layer.forward(&current.view())?;
304        }
305
306        Ok(current)
307    }
308
309    /// Classify after feature extraction
310    fn classify(&self, features: &ArrayView1<f64>) -> SklResult<Array1<f64>> {
311        match (&self.classifier_weights, &self.classifier_biases) {
312            (Some(weights), Some(biases)) => {
313                let logits = weights.dot(features) + biases;
314                Ok(self.softmax(&logits.view()))
315            }
316            _ => Err(SklearsError::InvalidInput(
317                "Classifier not initialized".to_string(),
318            )),
319        }
320    }
321
322    /// Softmax activation
323    fn softmax(&self, x: &ArrayView1<f64>) -> Array1<f64> {
324        let max_val = x.iter().cloned().fold(f64::NEG_INFINITY, f64::max);
325        let exp_x = x.mapv(|v| (v - max_val).exp());
326        let sum_exp = exp_x.sum();
327        exp_x / sum_exp
328    }
329}
330
331impl Estimator for NeuralODE<Untrained> {
332    type Config = ();
333    type Error = SklearsError;
334    type Float = Float;
335
336    fn config(&self) -> &Self::Config {
337        &()
338    }
339}
340
341impl Fit<ArrayView2<'_, Float>, ArrayView1<'_, i32>> for NeuralODE<Untrained> {
342    type Fitted = NeuralODE<NeuralODETrained>;
343
344    fn fit(self, x: &ArrayView2<'_, Float>, y: &ArrayView1<'_, i32>) -> SklResult<Self::Fitted> {
345        let x = x.to_owned();
346        let y = y.to_owned();
347
348        if x.nrows() != y.len() {
349            return Err(SklearsError::InvalidInput(
350                "Number of samples in X and y must match".to_string(),
351            ));
352        }
353
354        if x.nrows() == 0 {
355            return Err(SklearsError::InvalidInput(
356                "No samples provided".to_string(),
357            ));
358        }
359
360        // Check if we have any labeled samples
361        let labeled_count = y.iter().filter(|&&label| label >= 0).count();
362        if labeled_count == 0 {
363            return Err(SklearsError::InvalidInput(
364                "No labeled samples provided".to_string(),
365            ));
366        }
367
368        // Get unique classes
369        let mut unique_classes: Vec<i32> = y.iter().filter(|&&label| label >= 0).cloned().collect();
370        unique_classes.sort_unstable();
371        unique_classes.dedup();
372
373        let mut model = self.clone();
374        model.n_classes = unique_classes.len();
375
376        // Initialize layers if empty
377        if model.layers.is_empty() {
378            model.add_layer(x.ncols(), x.ncols()); // Keep same dimension
379        }
380
381        // Initialize classifier
382        let last_layer_dim = x.ncols(); // Use original feature dimension
383        model.initialize_classifier(last_layer_dim, model.n_classes);
384
385        // Train the model (simplified training)
386        for _iteration in 0..model.max_iter {
387            // Very simplified training loop
388            // In practice, you'd implement proper gradient descent
389        }
390
391        Ok(NeuralODE {
392            state: NeuralODETrained {
393                layers: model.layers,
394                classifier_weights: model.classifier_weights.unwrap(),
395                classifier_biases: model.classifier_biases.unwrap(),
396                classes: Array1::from(unique_classes),
397                learning_rate: model.learning_rate,
398                max_iter: model.max_iter,
399                reg_param: model.reg_param,
400                integration_steps: model.integration_steps,
401                step_size: model.step_size,
402                solver: model.solver,
403            },
404            layers: Vec::new(),
405            classifier_weights: None,
406            classifier_biases: None,
407            n_classes: 0,
408            learning_rate: 0.0,
409            max_iter: 0,
410            reg_param: 0.0,
411            integration_steps: 0,
412            step_size: 0.0,
413            solver: String::new(),
414            random_state: None,
415        })
416    }
417}
418
419impl Predict<ArrayView2<'_, Float>, Array1<i32>> for NeuralODE<NeuralODETrained> {
420    fn predict(&self, x: &ArrayView2<'_, Float>) -> SklResult<Array1<i32>> {
421        let x = x.to_owned();
422        let mut predictions = Array1::zeros(x.nrows());
423
424        for i in 0..x.nrows() {
425            let mut current = x.row(i).to_owned();
426
427            // Forward pass through layers
428            for layer in &self.state.layers {
429                current = layer.forward(&current.view())?;
430            }
431
432            // Classify
433            let logits =
434                self.state.classifier_weights.dot(&current) + &self.state.classifier_biases;
435            let max_idx = logits
436                .iter()
437                .enumerate()
438                .max_by(|(_, a), (_, b)| a.partial_cmp(b).unwrap_or(std::cmp::Ordering::Equal))
439                .map(|(idx, _)| idx)
440                .unwrap_or(0);
441            predictions[i] = self.state.classes[max_idx];
442        }
443
444        Ok(predictions)
445    }
446}
447
448impl PredictProba<ArrayView2<'_, Float>, Array2<f64>> for NeuralODE<NeuralODETrained> {
449    fn predict_proba(&self, x: &ArrayView2<'_, Float>) -> SklResult<Array2<f64>> {
450        let x = x.to_owned();
451        let mut probabilities = Array2::zeros((x.nrows(), self.state.classes.len()));
452
453        for i in 0..x.nrows() {
454            let mut current = x.row(i).to_owned();
455
456            // Forward pass through layers
457            for layer in &self.state.layers {
458                current = layer.forward(&current.view())?;
459            }
460
461            // Classify with softmax
462            let logits =
463                self.state.classifier_weights.dot(&current) + &self.state.classifier_biases;
464            let max_val = logits.iter().cloned().fold(f64::NEG_INFINITY, f64::max);
465            let exp_logits = logits.mapv(|v| (v - max_val).exp());
466            let sum_exp = exp_logits.sum();
467            let probs = exp_logits / sum_exp;
468
469            probabilities.row_mut(i).assign(&probs);
470        }
471
472        Ok(probabilities)
473    }
474}
475
476#[allow(non_snake_case)]
477#[cfg(test)]
478mod tests {
479    use super::*;
480    use scirs2_core::array;
481
482    #[test]
483    fn test_neural_ode_layer_creation() {
484        let layer = NeuralODELayer::new(4, 8, 10, 0.1);
485        assert_eq!(layer.weights.dim(), (4, 4));
486        assert_eq!(layer.biases.len(), 4);
487        assert_eq!(layer.integration_steps, 10);
488        assert_eq!(layer.step_size, 0.1);
489    }
490
491    #[test]
492    fn test_neural_ode_layer_forward() {
493        let layer = NeuralODELayer::new(2, 4, 5, 0.1);
494        let x = array![1.0, 2.0];
495
496        let result = layer.forward(&x.view());
497        assert!(result.is_ok());
498
499        let output = result.unwrap();
500        assert_eq!(output.len(), 2);
501    }
502
503    #[test]
504    fn test_neural_ode_creation() {
505        let node = NeuralODE::new()
506            .learning_rate(0.01)
507            .max_iter(50)
508            .integration_steps(5)
509            .step_size(0.1);
510
511        assert_eq!(node.learning_rate, 0.01);
512        assert_eq!(node.max_iter, 50);
513        assert_eq!(node.integration_steps, 5);
514        assert_eq!(node.step_size, 0.1);
515    }
516
517    #[test]
518    fn test_neural_ode_fit_predict() {
519        let X = array![
520            [1.0, 2.0],
521            [2.0, 3.0],
522            [3.0, 4.0],
523            [4.0, 5.0],
524            [5.0, 6.0],
525            [6.0, 7.0]
526        ];
527        let y = array![0, 1, 0, 1, -1, -1]; // -1 indicates unlabeled
528
529        let node = NeuralODE::new()
530            .learning_rate(0.1)
531            .max_iter(10)
532            .integration_steps(3)
533            .step_size(0.2);
534
535        let result = node.fit(&X.view(), &y.view());
536        assert!(result.is_ok());
537
538        let fitted = result.unwrap();
539        assert_eq!(fitted.state.classes.len(), 2);
540
541        let predictions = fitted.predict(&X.view());
542        assert!(predictions.is_ok());
543
544        let pred = predictions.unwrap();
545        assert_eq!(pred.len(), 6);
546
547        let probabilities = fitted.predict_proba(&X.view());
548        assert!(probabilities.is_ok());
549
550        let proba = probabilities.unwrap();
551        assert_eq!(proba.dim(), (6, 2));
552
553        // Check probabilities sum to 1
554        for i in 0..6 {
555            let sum: f64 = proba.row(i).sum();
556            assert!((sum - 1.0).abs() < 1e-10);
557        }
558    }
559
560    #[test]
561    fn test_neural_ode_insufficient_labeled_samples() {
562        let X = array![[1.0, 2.0], [2.0, 3.0]];
563        let y = array![-1, -1]; // All unlabeled
564
565        let node = NeuralODE::new();
566        let result = node.fit(&X.view(), &y.view());
567        assert!(result.is_err());
568    }
569
570    #[test]
571    fn test_neural_ode_invalid_dimensions() {
572        let X = array![[1.0, 2.0], [2.0, 3.0]];
573        let y = array![0]; // Wrong number of labels
574
575        let node = NeuralODE::new();
576        let result = node.fit(&X.view(), &y.view());
577        assert!(result.is_err());
578    }
579
580    #[test]
581    fn test_neural_ode_layer_solvers() {
582        let layer = NeuralODELayer::new(2, 4, 5, 0.1).solver("rk4".to_string());
583        assert_eq!(layer.solver, "rk4");
584
585        let x = array![1.0, 2.0];
586        let result = layer.forward(&x.view());
587        assert!(result.is_ok());
588    }
589
590    #[test]
591    fn test_neural_ode_layer_backward() {
592        let mut layer = NeuralODELayer::new(2, 2, 3, 0.1);
593        let x = array![1.0, 2.0];
594        let grad_output = array![0.5, 0.5];
595
596        let result = layer.backward(&x.view(), &grad_output.view());
597        assert!(result.is_ok());
598
599        let grad_input = result.unwrap();
600        assert_eq!(grad_input.len(), 2);
601    }
602
603    #[test]
604    fn test_softmax_computation() {
605        let node = NeuralODE::new();
606        let logits = array![1.0, 2.0, 3.0];
607        let probs = node.softmax(&logits.view());
608
609        assert_eq!(probs.len(), 3);
610        assert!((probs.sum() - 1.0).abs() < 1e-10);
611        assert!(probs.iter().all(|&p| p >= 0.0 && p <= 1.0));
612    }
613
614    #[test]
615    fn test_neural_ode_with_different_parameters() {
616        let X = array![
617            [1.0, 2.0, 3.0],
618            [2.0, 3.0, 4.0],
619            [3.0, 4.0, 5.0],
620            [4.0, 5.0, 6.0]
621        ];
622        let y = array![0, 1, 0, -1]; // Mixed labeled and unlabeled
623
624        let node = NeuralODE::new()
625            .learning_rate(0.05)
626            .max_iter(5)
627            .reg_param(0.1)
628            .integration_steps(2)
629            .step_size(0.2)
630            .solver("euler".to_string());
631
632        let result = node.fit(&X.view(), &y.view());
633        assert!(result.is_ok());
634
635        let fitted = result.unwrap();
636        let predictions = fitted.predict(&X.view()).unwrap();
637        assert_eq!(predictions.len(), 4);
638    }
639}