Module probabilistic_imputation

Module probabilistic_imputation 

Source
Expand description

Probabilistic imputation methods

This module provides advanced probabilistic imputation techniques including:

  • Bayesian imputation with prior distributions
  • Expectation-Maximization (EM) algorithm for missing data
  • Gaussian Process imputation for smooth interpolation
  • Monte Carlo imputation for uncertainty quantification
  • Copula-based imputation for preserving dependencies

Structs§

BayesianImputer
Bayesian imputer using conjugate priors
BayesianImputerConfig
Configuration for Bayesian imputation
BayesianImputerFitted
Fitted Bayesian imputer
EMImputer
EM imputer using multivariate normal model
EMImputerConfig
Configuration for EM imputation
EMImputerFitted
Fitted EM imputer
GaussianProcessImputer
Gaussian Process imputer for smooth interpolation
GaussianProcessImputerConfig
Configuration for Gaussian Process imputation
GaussianProcessImputerFitted
Fitted Gaussian Process imputer
MonteCarloImputer
Monte Carlo imputer for uncertainty quantification
MonteCarloImputerConfig
Configuration for Monte Carlo imputation
MonteCarloImputerFitted
Fitted Monte Carlo imputer

Enums§

MonteCarloBaseMethod