Module outlier_transformation

Module outlier_transformation 

Source
Expand description

Outlier transformation methods for handling extreme values

This module provides various transformation methods specifically designed to handle outliers in data while preserving the overall structure and relationships. Unlike outlier detection which identifies outliers, these methods transform them to reduce their impact on downstream analysis.

§Features

  • Log Transformation: Reduces impact of large outliers through logarithmic scaling
  • Square Root Transformation: Mild transformation for positive outliers
  • Box-Cox Transformation: Data-driven power transformation for normalization
  • Quantile Transformation: Maps to uniform or normal distribution
  • Robust Scaling: Scaling resistant to outliers using median and IQR
  • Outlier Interpolation: Replace outliers with interpolated values
  • Outlier Smoothing: Smooth outliers using neighboring values
  • Trimmed Transformation: Apply transformations after trimming extreme percentiles

Structs§

FeatureTransformationParams
Transformation parameters for a single feature
GlobalTransformationParams
Global transformation parameters
OutlierTransformationConfig
Configuration for outlier transformation
OutlierTransformer
Outlier transformer for handling extreme values through transformation
TransformationParameters
Parameters learned during fitting for transformations

Enums§

OutlierTransformationMethod
Available outlier transformation methods