Module encoding

Module encoding 

Source
Expand description

Data encoding and categorical feature transformation utilities

This module provides comprehensive data encoding implementations including label encoding, one-hot encoding, ordinal encoding, binary encoding, hash encoding, frequency encoding, target encoding, feature hashing, categorical transformations, cardinality reduction, embedding-based encoding, statistical encoding, smoothing techniques, regularization methods, cross-validation encoding, time-aware encoding, and high-performance categorical feature processing pipelines. All algorithms have been refactored into focused modules for better maintainability and comply with SciRS2 Policy.

Structs§

BinaryEncoder
Binary encoder for high-cardinality categorical features
BinaryEncoderConfig
Configuration for BinaryEncoder
BinaryEncoderFitted
Fitted state of BinaryEncoder
CategoricalEmbedding
Categorical embedding using neural network-style embeddings
CategoricalEmbeddingConfig
Configuration for CategoricalEmbedding
FrequencyEncoder
Frequency encoder transforms categories to their occurrence frequencies
FrequencyEncoderConfig
Frequency encoder configuration
HashEncoder
Hash encoder for categorical features using feature hashing
HashEncoderConfig
Configuration for HashEncoder
LabelEncoder
Label encoder for transforming categorical labels to integers
OneHotEncoder
One-hot encoder for categorical features
OrdinalEncoder
Ordinal encoder for categorical features with inherent ordering
TargetEncoder
Target encoder using target statistics for categorical encoding

Enums§

HashMethod
Hash function options
RareStrategy
Strategy for handling rare categories
UnknownStrategy
Strategy for handling unknown categories