Expand description
Neural network implementations for the sklears machine learning library.
This crate provides implementations of neural network algorithms compatible with the scikit-learn API, including Multi-Layer Perceptron (MLP) for classification and regression tasks.
§Examples
ⓘ
use sklears_neural::{MLPClassifier, Activation};
use sklears_core::traits::{Predict};
use scirs2_core::ndarray::Array2;
let x = Array2::from_shape_vec((4, 2), vec![
0.0, 0.0,
0.0, 1.0,
1.0, 0.0,
1.0, 1.0,
])?;
let y = vec![0, 1, 1, 0]; // XOR problem
let mlp = MLPClassifier::new()
.hidden_layer_sizes(&[10, 5])
.activation(Activation::Relu)
.max_iter(1000)
.learning_rate_init(0.01)
.random_state(42);
let trained_mlp = mlp.fit(&x, &y)?;
let predictions = trained_mlp.predict(&x)?;Re-exports§
pub use activation::*;pub use attention_rnn::*;pub use autoencoder::*;pub use checkpointing::*;pub use config::*;pub use conv_layers::*;pub use curriculum::*;pub use data_augmentation::*;pub use distributed::*;pub use experiment_tracking::*;pub use gan::*;pub use gpu::*;pub use gradient_checking::*;pub use interpretation::*;pub use knowledge_distillation::*;pub use layers::*;pub use memory_leak_tests::*;pub use mlp_classifier::*;pub use mlp_regressor::*;pub use model_selection::*;pub use models::*;pub use multi_task::*;pub use neural_metrics::*;pub use performance_testing::*;pub use quantization::*;pub use rbm::*;pub use regularization::*;pub use self_supervised::*;pub use seq2seq::*;pub use solvers::*;pub use transfer_learning::*;pub use transformer::*;pub use utils::*;pub use vae::*;pub use validation::*;pub use versioning::*;pub use visualization::*;pub use weight_init::*;
Modules§
- activation
- Activation functions for neural networks.
- attention_
rnn - Attention-based Recurrent Neural Networks
- autoencoder
- Autoencoder implementation for unsupervised feature learning
- checkpointing
- Model checkpointing and state management for neural networks.
- config
- Configuration Management for Neural Networks
- conv_
layers - Convolutional layers for neural networks.
- curriculum
- Curriculum learning implementation for neural networks.
- data_
augmentation - Data augmentation utilities for neural network training.
- distributed
- experiment_
tracking - Comprehensive experiment tracking system for neural network training.
- gan
- Generative Adversarial Networks (GANs) implementation
- gpu
- GPU acceleration module for neural network computations
- gradient_
checking - interpretation
- Model interpretation and explainability tools for neural networks.
- knowledge_
distillation - Knowledge Distillation implementation for model compression
- layers
- Neural network layer implementations.
- memory_
leak_ tests - Memory leak detection tests for neural network training and inference.
- mlp_
classifier - Multi-layer Perceptron (MLP) classifier implementation.
- mlp_
regressor - Multi-layer Perceptron (MLP) regressor implementation.
- model_
selection - models
- Neural network model architectures.
- multi_
task - Multi-Task Learning for Neural Networks
- neural_
metrics - Neural Network Specific Metrics
- performance_
testing - Performance testing and benchmarking utilities for neural networks.
- quantization
- Model Quantization utilities for neural network compression
- rbm
- Restricted Boltzmann Machine (RBM) implementation
- regularization
- Regularization techniques for neural networks.
- self_
supervised - seq2seq
- Sequence-to-sequence models for neural machine translation and similar tasks.
- solvers
- Optimization solvers for neural networks.
- transfer_
learning - Transfer Learning Utilities
- transformer
- Encoder-Decoder Transformer Architectures
- utils
- Neural network utility functions and helper modules.
- vae
- Variational Autoencoder (VAE) implementation for generative modeling
- validation
- Hyperparameter validation and configuration management for neural networks.
- versioning
- visualization
- Model Visualization Utilities
- weight_
init - Weight initialization strategies for neural networks.
Type Aliases§
- Neural
Result - Result type for neural network operations