Crate sklears_neural

Crate sklears_neural 

Source
Expand description

Neural network implementations for the sklears machine learning library.

This crate provides implementations of neural network algorithms compatible with the scikit-learn API, including Multi-Layer Perceptron (MLP) for classification and regression tasks.

§Examples

use sklears_neural::{MLPClassifier, Activation};
use sklears_core::traits::{Predict};
use scirs2_core::ndarray::Array2;

let x = Array2::from_shape_vec((4, 2), vec![
    0.0, 0.0,
    0.0, 1.0,
    1.0, 0.0,
    1.0, 1.0,
])?;
let y = vec![0, 1, 1, 0]; // XOR problem

let mlp = MLPClassifier::new()
    .hidden_layer_sizes(&[10, 5])
    .activation(Activation::Relu)
    .max_iter(1000)
    .learning_rate_init(0.01)
    .random_state(42);

let trained_mlp = mlp.fit(&x, &y)?;
let predictions = trained_mlp.predict(&x)?;

Re-exports§

pub use activation::*;
pub use attention_rnn::*;
pub use autoencoder::*;
pub use checkpointing::*;
pub use config::*;
pub use conv_layers::*;
pub use curriculum::*;
pub use data_augmentation::*;
pub use distributed::*;
pub use experiment_tracking::*;
pub use gan::*;
pub use gpu::*;
pub use gradient_checking::*;
pub use interpretation::*;
pub use knowledge_distillation::*;
pub use layers::*;
pub use memory_leak_tests::*;
pub use mlp_classifier::*;
pub use mlp_regressor::*;
pub use model_selection::*;
pub use models::*;
pub use multi_task::*;
pub use neural_metrics::*;
pub use performance_testing::*;
pub use quantization::*;
pub use rbm::*;
pub use regularization::*;
pub use self_supervised::*;
pub use seq2seq::*;
pub use solvers::*;
pub use transfer_learning::*;
pub use transformer::*;
pub use utils::*;
pub use vae::*;
pub use validation::*;
pub use versioning::*;
pub use visualization::*;
pub use weight_init::*;

Modules§

activation
Activation functions for neural networks.
attention_rnn
Attention-based Recurrent Neural Networks
autoencoder
Autoencoder implementation for unsupervised feature learning
checkpointing
Model checkpointing and state management for neural networks.
config
Configuration Management for Neural Networks
conv_layers
Convolutional layers for neural networks.
curriculum
Curriculum learning implementation for neural networks.
data_augmentation
Data augmentation utilities for neural network training.
distributed
experiment_tracking
Comprehensive experiment tracking system for neural network training.
gan
Generative Adversarial Networks (GANs) implementation
gpu
GPU acceleration module for neural network computations
gradient_checking
interpretation
Model interpretation and explainability tools for neural networks.
knowledge_distillation
Knowledge Distillation implementation for model compression
layers
Neural network layer implementations.
memory_leak_tests
Memory leak detection tests for neural network training and inference.
mlp_classifier
Multi-layer Perceptron (MLP) classifier implementation.
mlp_regressor
Multi-layer Perceptron (MLP) regressor implementation.
model_selection
models
Neural network model architectures.
multi_task
Multi-Task Learning for Neural Networks
neural_metrics
Neural Network Specific Metrics
performance_testing
Performance testing and benchmarking utilities for neural networks.
quantization
Model Quantization utilities for neural network compression
rbm
Restricted Boltzmann Machine (RBM) implementation
regularization
Regularization techniques for neural networks.
self_supervised
seq2seq
Sequence-to-sequence models for neural machine translation and similar tasks.
solvers
Optimization solvers for neural networks.
transfer_learning
Transfer Learning Utilities
transformer
Encoder-Decoder Transformer Architectures
utils
Neural network utility functions and helper modules.
vae
Variational Autoencoder (VAE) implementation for generative modeling
validation
Hyperparameter validation and configuration management for neural networks.
versioning
visualization
Model Visualization Utilities
weight_init
Weight initialization strategies for neural networks.

Type Aliases§

NeuralResult
Result type for neural network operations