Expand description
Multi-Output Learning Optimization Framework
This module provides a comprehensive suite of optimization algorithms for multi-output learning problems. It has been refactored from a monolithic 2697-line file into 5 specialized modules for improved maintainability and focused functionality.
§Module Organization
- joint_loss_optimization: Joint loss optimization with multiple loss function combinations
- multi_objective_optimization: Genetic algorithm-based Pareto optimization
- scalarization_methods: Scalarization techniques for multi-objective problems
- nsga2_algorithms: NSGA-II evolutionary algorithms with advanced operators
- evolutionary_multi_objective: Complete NSGA-II implementation with SBX crossover and polynomial mutation
- tests: Comprehensive integration test suite
§Key Features
- Joint Loss Functions: MSE, MAE, Huber, Cross-entropy, and Hinge losses
- Loss Combination Strategies: Sum, weighted sum, max, geometric mean, and adaptive
- Multi-Objective Optimization: Pareto-optimal solution discovery
- Scalarization Methods: Weighted sum, epsilon-constraint, and Tchebycheff approaches
- Advanced Evolutionary Algorithms: NSGA-II with SBX crossover and polynomial mutation
- Performance Monitoring: Convergence tracking with hypervolume indicator
Re-exports§
pub use joint_loss_optimization::JointLossConfig;pub use joint_loss_optimization::JointLossOptimizer;pub use joint_loss_optimization::JointLossOptimizerTrained;pub use joint_loss_optimization::LossCombination;pub use joint_loss_optimization::LossFunction;pub use multi_objective_optimization::MultiObjectiveConfig;pub use multi_objective_optimization::MultiObjectiveOptimizer;pub use multi_objective_optimization::MultiObjectiveOptimizerTrained;pub use multi_objective_optimization::ParetoSolution;pub use scalarization_methods::ScalarizationConfig;pub use scalarization_methods::ScalarizationMethod;pub use scalarization_methods::ScalarizationOptimizer;pub use scalarization_methods::ScalarizationOptimizerTrained;pub use nsga2_algorithms::NSGA2Algorithm;pub use nsga2_algorithms::NSGA2Config;pub use nsga2_algorithms::NSGA2Optimizer;pub use nsga2_algorithms::NSGA2OptimizerTrained;pub use evolutionary_multi_objective::GenerationStats;pub use evolutionary_multi_objective::Individual;pub use evolutionary_multi_objective::OptimizationResult;pub use evolutionary_multi_objective::NSGAII;
Modules§
- evolutionary_
multi_ objective - Evolutionary Multi-Objective Optimization Algorithms
- joint_
loss_ optimization - Joint Loss Optimization for Multi-Output Learning
- multi_
objective_ optimization - Multi-Objective Optimization for Multi-Output Learning
- nsga2_
algorithms - Enhanced Evolutionary Multi-Objective Optimization Algorithms
- scalarization_
methods - Scalarization Methods for Multi-Objective Optimization