sklears_multiclass/
lib.rs

1#![allow(dead_code)]
2#![allow(non_snake_case)]
3#![allow(missing_docs)]
4#![allow(deprecated)]
5#![allow(clippy::all)]
6#![allow(clippy::pedantic)]
7#![allow(clippy::nursery)]
8//! Multiclass classification strategies
9//!
10//! This module provides meta-estimators for multiclass classification problems.
11//! It implements strategies like One-vs-Rest and One-vs-One for transforming
12//! binary classifiers into multiclass ones.
13
14// #![warn(missing_docs)]
15
16// TODO: ndarray 0.17 HRTB trait bound issues - re-enable after fixing Fit/Predict/Score trait bounds
17// pub mod advanced;
18// pub mod calibration;
19// pub mod core;
20// pub mod ensemble;
21pub mod export;
22pub mod gpu;
23pub mod incremental;
24pub mod memory;
25pub mod simd;
26pub mod uncertainty;
27pub mod utils;
28
29// TODO: ndarray 0.17 HRTB trait bound issues - re-enable after fixing Fit/Predict/Score trait bounds
30// pub mod boosting;
31// pub mod dynamic_ensemble;
32// pub mod ecoc;
33// pub mod one_vs_one;
34// pub mod one_vs_rest;
35// pub mod rotation_forest;
36
37// TODO: ndarray 0.17 HRTB trait bound issues - re-enable after fixing Fit/Predict/Score trait bounds
38// pub use advanced::*;
39// pub use calibration::*;
40// pub use core::ecoc::*;
41// pub use ensemble::*;
42pub use utils::*;
43
44// TODO: ndarray 0.17 HRTB trait bound issues - re-enable after fixing Fit/Predict/Score trait bounds
45// pub use one_vs_rest::{
46//     OneVsRestBuilder, OneVsRestClassifier, OneVsRestConfig, OneVsRestTrainedData, TrainedOneVsRest,
47// };
48
49// pub use one_vs_one::{
50//     ConsensusConfig, ConsensusMethod, ConsensusResult, ConsensusStrategy, OneVsOneBuilder,
51//     OneVsOneClassifier, OneVsOneConfig, OneVsOneTrainedData, TrainedOneVsOne, VotingStrategy,
52// };
53
54// pub use ecoc::{
55//     ECOCBuilder, ECOCClassifier, ECOCConfig, ECOCStrategy, ECOCTrainedData, TrainedECOC,
56// };
57
58// pub use boosting::{
59//     AdaBoostBuilder, AdaBoostClassifier, AdaBoostConfig, AdaBoostStrategy, AdaBoostTrainedData,
60//     GradientBoostingBuilder, GradientBoostingClassifier, GradientBoostingConfig,
61//     GradientBoostingLoss, GradientBoostingTrainedData, TrainedAdaBoost, TrainedGradientBoosting,
62// };
63
64// pub use rotation_forest::{
65//     FeatureSelectionStrategy, RotationForestBuilder, RotationForestClassifier,
66//     RotationForestConfig, RotationForestTrainedData, RotationInfo, TrainedRotationForest,
67// };
68
69// pub use dynamic_ensemble::{
70//     CompetenceMeasure, CompetenceRegion, DynamicEnsembleSelectionBuilder,
71//     DynamicEnsembleSelectionClassifier, DynamicEnsembleSelectionConfig,
72//     DynamicEnsembleSelectionTrainedData, PoolGenerationStrategy, SelectionStrategy,
73//     TrainedDynamicEnsemble,
74// };