1#![allow(dead_code)]
2#![allow(non_snake_case)]
3#![allow(missing_docs)]
4#![allow(deprecated)]
5#![allow(clippy::all)]
6#![allow(clippy::pedantic)]
7#![allow(clippy::nursery)]
8mod adaptive_resource_allocation;
11mod adversarial_validation;
12mod automl_algorithm_selection;
13mod automl_feature_engineering;
14mod automl_pipeline;
15mod bayes_search;
18mod bayesian_model_averaging;
19mod bayesian_model_selection;
20mod bias_variance;
21mod config_management;
22mod conformal_prediction;
23mod cross_validation;
24mod cv;
25mod cv_model_selection;
26mod drift_detection;
27mod early_stopping;
28mod ensemble_evaluation;
29mod ensemble_selection;
30mod epistemic_uncertainty;
31mod grid_search;
34mod halving_grid_search;
35mod hierarchical_validation;
36mod hyperparameter_importance;
37mod imbalanced_validation;
38mod incremental_evaluation;
39mod information_criteria;
40mod memory_efficient;
41mod meta_learning;
42mod meta_learning_advanced;
43mod model_comparison;
44mod model_complexity;
45mod multi_fidelity_advanced;
46mod multi_fidelity_optimization;
47mod multilabel_validation;
48mod neural_architecture_search;
49mod noise_injection;
50mod ood_validation;
51mod optimizer_plugins;
52mod parallel_optimization;
53mod parameter_space;
54mod scoring;
57mod spatial_validation;
58mod temporal_validation;
59mod threshold_tuning;
60mod train_test_split;
61mod validation;
62mod warm_start;
63mod worst_case_validation;
64
65pub use adaptive_resource_allocation::{
66 AdaptiveAllocationConfig, AdaptiveResourceAllocator, AllocationStatistics, AllocationStrategy,
67 ResourceConfiguration,
68};
69pub use adversarial_validation::{
70 AdversarialStatistics, AdversarialValidationConfig, AdversarialValidationResult,
71 AdversarialValidator,
72};
73pub use automl_algorithm_selection::{
74 select_best_algorithm, AlgorithmFamily, AlgorithmSelectionResult, AlgorithmSpec,
75 AutoMLAlgorithmSelector, AutoMLConfig, ComputationalConstraints,
76 DatasetCharacteristics as AutoMLDatasetCharacteristics, RankedAlgorithm, TargetStatistics,
77};
78pub use automl_feature_engineering::{
79 engineer_features, AutoFeatureEngineer, AutoFeatureEngineering, FeatureEngineeringResult,
80 FeatureEngineeringStrategy, FeatureSelectionMethod, FeatureStatistics,
81 FeatureTransformationType, GeneratedFeature, TransformationInfo,
82};
83pub use automl_pipeline::{
84 automl, automl_with_budget, AutoMLPipeline, AutoMLPipelineConfig, AutoMLPipelineResult,
85 AutoMLProgressCallback, AutoMLStage, ConsoleProgressCallback, OptimizationLevel,
86};
87pub use bayes_search::{
92 AcquisitionFunction as BayesAcquisitionFunction, BayesSearchCV, BayesSearchConfig,
93 ParamDistribution as BayesParamDistribution, TPEConfig, TPEOptimizer,
94};
95pub use bayesian_model_averaging::{
96 bayesian_model_average, BMAConfig, BMAResult, BayesianModelAverager as BMA_Averager,
97 EvidenceMethod, ModelInfo as BMA_ModelInfo, PriorType,
98};
99pub use bayesian_model_selection::{
100 BayesianModelAverager as BayesianModelSelector_BA, BayesianModelSelectionResult,
101 BayesianModelSelector, EvidenceEstimationMethod, ModelEvidenceData,
102};
103pub use bias_variance::{
104 bias_variance_decompose, BiasVarianceAnalyzer, BiasVarianceConfig, BiasVarianceResult,
105 SampleBiasVariance,
106};
107pub use config_management::{
108 ConfigError, ConfigManager, CrossValidationConfig as CVConfig, EarlyStoppingConfig as ESConfig,
109 ModelSelectionConfig, OptimizationConfig as OptiConfig, ParameterDefinition, ResourceConfig,
110 ScoringConfig as ScoreConfig,
111};
112pub use conformal_prediction::{
113 ConformalPredictionConfig, ConformalPredictionResult, ConformalPredictor, CoverageStatistics,
114 EfficiencyMetrics, JackknifeConformalPredictor, NonconformityMethod,
115};
116pub use cross_validation::{
117 BlockCrossValidator, BlockedTimeSeriesCV, BootstrapCV, CrossValidator, CustomCrossValidator,
118 GroupKFold, GroupShuffleSplit, GroupStrategy, KFold, LeaveOneGroupOut, LeaveOneOut,
119 LeavePGroupsOut, LeavePOut, MonteCarloCV, PredefinedSplit, PurgedGroupTimeSeriesSplit,
120 RegressionCrossValidator, RepeatedKFold, RepeatedStratifiedKFold, ShuffleSplit,
121 StratifiedGroupKFold, StratifiedKFold, StratifiedRegressionKFold, StratifiedShuffleSplit,
122 TimeSeriesSplit,
123};
124pub use cv_model_selection::{
125 cv_select_model, CVModelScore, CVModelSelectionConfig, CVModelSelectionResult, CVModelSelector,
126 ModelComparisonPair, ModelRanking, ModelSelectionCriteria,
127};
128pub use drift_detection::{
129 DriftDetectionConfig, DriftDetectionMethod, DriftDetectionResult, DriftDetector,
130 DriftStatistics,
131};
132pub use early_stopping::{
133 AdaptationConfig, AdaptiveEarlyStopping, ConvergenceMetrics, EarlyStoppingCallback,
134 EarlyStoppingConfig, EarlyStoppingMonitor, EarlyStoppingStrategy,
135};
136pub use ensemble_evaluation::{
137 evaluate_ensemble, DiversityAnalysis, DiversityMeasure, EnsembleEvaluationConfig,
138 EnsembleEvaluationResult, EnsembleEvaluationStrategy, EnsembleEvaluator,
139 EnsemblePerformanceMetrics, MemberContribution, MultiObjectiveAnalysis, OutOfBagScores,
140 ProgressivePerformance, StabilityAnalysis, StabilityMetric,
141};
142pub use ensemble_selection::{
143 select_ensemble, DiversityMeasures, EnsemblePerformance, EnsembleSelectionConfig,
144 EnsembleSelectionResult, EnsembleSelector, EnsembleStrategy, ModelInfo as EnsembleModelInfo,
145 ModelPerformance,
146};
147pub use epistemic_uncertainty::{
148 quantify_aleatoric_uncertainty, quantify_epistemic_uncertainty, quantify_uncertainty,
149 AleatoricUncertaintyConfig, AleatoricUncertaintyMethod, AleatoricUncertaintyQuantifier,
150 AleatoricUncertaintyResult, CalibrationMethod, EpistemicUncertaintyConfig,
151 EpistemicUncertaintyMethod, EpistemicUncertaintyQuantifier, EpistemicUncertaintyResult,
152 ReliabilityDiagram, ReliabilityMetrics, UncertaintyComponents, UncertaintyDecomposition,
153 UncertaintyDecompositionMethod, UncertaintyQuantificationConfig,
154 UncertaintyQuantificationResult, UncertaintyQuantifier,
155};
156pub use grid_search::{
163 GridSearchCV, GridSearchResults, ParameterDistribution, ParameterDistributions, ParameterGrid,
164 ParameterSet, ParameterValue as GridParameterValue, RandomizedSearchCV,
165};
166pub use halving_grid_search::{
167 HalvingGridSearch, HalvingGridSearchConfig, HalvingGridSearchResults, HalvingRandomSearchCV,
168};
169pub use hierarchical_validation::{
170 hierarchical_cross_validate, ClusterInfo, HierarchicalCrossValidator, HierarchicalSplit,
171 HierarchicalStrategy, HierarchicalValidationConfig, HierarchicalValidationResult,
172};
173pub use hyperparameter_importance::{
174 analyze_parameter_sensitivity, compute_shap_importance, AblationAnalyzer, AblationConfig,
175 AblationResult, ComprehensiveImportanceResult, FANOVAAnalyzer, FANOVAConfig, FANOVAResult,
176 HyperparameterImportanceAnalyzer, ParameterSensitivity, SHAPAnalyzer, SHAPConfig, SHAPResult,
177 SensitivityAnalyzer, SensitivityConfig, SensitivityResult,
178};
179pub use imbalanced_validation::{
180 imbalanced_cross_validate, ClassStatistics, ImbalancedCrossValidator, ImbalancedSplit,
181 ImbalancedStrategy, ImbalancedValidationConfig, ImbalancedValidationResult, SamplingStrategy,
182};
183pub use incremental_evaluation::{
184 evaluate_incremental_stream, AdaptationCriterion, ConceptDriftHandling, DriftDetectorType,
185 DriftEvent, DriftType, FoldUpdateStrategy, IncrementalEvaluationConfig,
186 IncrementalEvaluationResult, IncrementalEvaluationStrategy, IncrementalEvaluator,
187 PerformanceSnapshot, StreamingStatistics,
188};
189pub use information_criteria::{
190 CrossValidatedIC, InformationCriterion, InformationCriterionCalculator,
191 InformationCriterionResult, ModelComparisonResult as ICModelComparisonResult,
192};
193pub use memory_efficient::{
194 memory_efficient_cross_validate, DataChunk, MemoryEfficiencyStats, MemoryEfficientConfig,
195 MemoryEfficientCrossValidator, MemoryError, MemoryPool, MemorySnapshot, MemoryTracker,
196 StreamingDataReader, StreamingEvaluationResult,
197};
198pub use meta_learning::{
199 meta_learning_recommend, ComplexityMeasures, DatasetCharacteristics, FeatureType,
200 MetaLearningConfig, MetaLearningEngine, MetaLearningRecommendation, MetaLearningStrategy,
201 OptimizationRecord, ParameterValue, SimilarityMetric, StatisticalMeasures, SurrogateModel,
202 TransferMethod,
203};
204pub use meta_learning_advanced::{
205 Experience as OptimizationExperience_Advanced, ExperienceReplayBuffer, ExperienceReplayConfig,
206 FewShotAlgorithm, FewShotConfig, FewShotOptimizer, FewShotResult, ImportanceWeightingMethod,
207 Learn2OptimizeConfig, Learn2OptimizeResult, LearnedOptimizer,
208 OptimizationExperience as MetaOptimizationExperience, OptimizationLearner,
209 OptimizationTask as MetaOptimizationTask, OptimizerArchitecture,
210 ParameterRange as MetaParameterRange, ParameterScale, PrioritizationStrategy, ReplayResult,
211 SamplingStrategy as ReplaySamplingStrategy, TaskCharacteristics as MetaTaskCharacteristics,
212 TransferLearningConfig, TransferLearningOptimizer, TransferResult, TransferStrategy,
213};
214pub use model_comparison::{
215 friedman_test, mcnemar_test, multiple_model_comparison, nemenyi_post_hoc_test, paired_t_test,
216 wilcoxon_signed_rank_test, ModelComparisonResult, MultipleTestingCorrection,
217 StatisticalTestResult,
218};
219pub use model_complexity::{
220 analyze_model_complexity, detect_overfitting_learning_curve, ComplexityAnalysisConfig,
221 ComplexityAnalysisResult, ComplexityMeasure, ComplexityRecommendation, ModelComplexityAnalyzer,
222 OverfittingDetector,
223};
224pub use multi_fidelity_advanced::{
225 AdaptiveFidelitySelector, AdaptiveFidelityStrategy, AllocationPlan, BudgetAllocationStrategy,
226 BudgetAllocator, CoarseToFineConfig, CoarseToFineOptimizer, CoarseToFineResult,
227 CoarseToFineStrategy, ConfigAllocation, ConfigurationWithPerformance,
228 ProgressiveAllocationConfig, ProgressiveAllocationStrategy, ProgressiveAllocator,
229};
230pub use multi_fidelity_optimization::{
231 multi_fidelity_optimize, AcquisitionFunction, CorrelationModel, CostModel, FidelityEvaluation,
232 FidelityLevel, FidelityProgression, FidelitySelectionMethod, MultiFidelityConfig,
233 MultiFidelityOptimizer, MultiFidelityResult, MultiFidelityStrategy,
234};
235pub use multilabel_validation::{
236 multilabel_cross_validate, LabelStatistics, MultiLabelCrossValidator, MultiLabelSplit,
237 MultiLabelStrategy, MultiLabelValidationConfig, MultiLabelValidationResult,
238};
239pub use neural_architecture_search::{
240 ArchitectureEvaluation, ArchitectureSearchSpace, NASConfig, NASOptimizer, NASResult,
241 NASStrategy, NeuralArchitecture,
242};
243pub use noise_injection::{
244 robustness_test, AdversarialMethod, NoiseConfig, NoiseInjector, NoiseStatistics, NoiseType,
245 RobustnessTestResult,
246};
247pub use ood_validation::{
248 validate_ood, DistributionShiftMetrics, OODConfidenceIntervals, OODDetectionMethod,
249 OODValidationConfig, OODValidationResult, OODValidator,
250};
251pub use optimizer_plugins::{
252 CustomMetric, Evaluation, HookError, HookManager, LoggingHook, MetricError, MetricRegistry,
253 MiddlewareError, MiddlewarePipeline, NormalizationMiddleware,
254 OptimizationHistory as PluginOptimizationHistory, OptimizationHook, OptimizationMiddleware,
255 OptimizerPlugin, ParameterConstraints as PluginParameterConstraints, PluginConfig, PluginError,
256 PluginFactory, PluginRegistry, StopReason,
257};
258pub use parallel_optimization::{
259 parallel_optimize, BatchAcquisitionStrategy, CommunicationProtocol, ErrorHandlingStrategy,
260 EvaluationResult, LoadBalancingStrategy, ParallelOptimizationConfig,
261 ParallelOptimizationResult, ParallelOptimizer, ParallelStrategy, ProgressReportingConfig,
262 ResourceUtilization, SynchronizationStrategy, WorkerStatistics,
263};
264pub use parameter_space::{
265 CategoricalParameter, ConditionalParameter, ParameterConstraint, ParameterImportanceAnalyzer,
266 ParameterSpace,
267};
268pub use scoring::{
274 paired_ttest, ClosureScorer, CustomScorer, EnhancedScorer, ScorerRegistry, ScoringConfig,
275 ScoringResult, SignificanceTestResult, TaskType,
276};
277pub use spatial_validation::{
278 DistanceMethod, LeaveOneRegionOut, SpatialClusteringMethod, SpatialCoordinate,
279 SpatialCrossValidator, SpatialValidationConfig,
280};
281pub use temporal_validation::{
282 BlockedTemporalCV, SeasonalCrossValidator, TemporalCrossValidator, TemporalValidationConfig,
283};
284pub use threshold_tuning::{
285 optimize_threshold, FixedThresholdClassifier, OptimizationMetric, ThresholdOptimizationResult,
286 TunedThresholdClassifierCV, TunedThresholdClassifierCVTrained,
287};
288pub use train_test_split::train_test_split;
289pub use validation::{
290 cross_val_predict, cross_val_score, cross_validate, learning_curve, nested_cross_validate,
291 permutation_test_score, validation_curve, CrossValidateResult, LearningCurveResult,
292 NestedCVResult, ParamConfigFn, PermutationTestResult, Scoring, ValidationCurveResult,
293};
294pub use warm_start::{
295 EvaluationRecord, OptimizationHistory, OptimizationStatistics, TransferLearning,
296 WarmStartConfig, WarmStartInitializer, WarmStartStrategy,
297};
298pub use worst_case_validation::{
299 worst_case_validate, AdversarialAttackMethod, CorruptionType, DistributionShiftType,
300 DriftPattern, MissingPattern, NoisePattern, RobustnessMetrics, ScenarioResult,
301 WorstCaseScenario, WorstCaseScenarioGenerator, WorstCaseValidationConfig,
302 WorstCaseValidationResult, WorstCaseValidator,
303};