pub fn validation_curve<E, F, C>(
estimator: E,
x: &Array2<Float>,
y: &Array1<Float>,
_param_name: &str,
param_range: Vec<ParameterValue>,
param_config: ParamConfigFn<E>,
cv: &C,
scoring: Option<Scoring>,
confidence_level: Option<f64>,
) -> Result<ValidationCurveResult>Expand description
Compute validation curves for an estimator
Determines training and test scores for a varying parameter value. This is useful to understand the effect of a specific parameter on model performance and to detect overfitting/underfitting.
ยงArguments
estimator- The estimator to evaluatex- Training data featuresy- Training data targets_param_name- Name of the parameter being varied (for documentation)param_range- Parameter values to testparam_config- Function to configure estimator with parameter valuescv- Cross-validation splitterscoring- Scoring method to useconfidence_level- Confidence level for error bars (default: 0.95 for 95% confidence interval)