sklears_model_selection/epistemic_uncertainty/
uncertainty_methods.rs1#[derive(Debug, Clone)]
2pub enum EpistemicUncertaintyMethod {
3 MonteCarloDropout {
5 dropout_rate: f64,
6
7 n_samples: usize,
8 },
9 DeepEnsembles {
11 n_models: usize,
12 },
13 BayesianNeuralNetwork {
15 n_samples: usize,
16 },
17 Bootstrap {
18 n_bootstrap: usize,
19 sample_ratio: f64,
20 },
21 GaussianProcess {
22 kernel_type: String,
23 },
24 VariationalInference {
25 n_samples: usize,
26 },
27 LaplaceApproximation {
28 hessian_method: String,
29 },
30}
31
32#[derive(Debug, Clone)]
33pub enum AleatoricUncertaintyMethod {
34 HeteroskedasticRegression {
36 n_ensemble: usize,
37 },
38 MixtureDensityNetwork {
40 n_components: usize,
41 },
42 QuantileRegression {
44 quantiles: Vec<f64>,
45 },
46 ParametricUncertainty {
48 distribution: String,
49 },
50 InputDependentNoise {
51 noise_model: String,
52 },
53 ResidualBasedUncertainty {
54 window_size: usize,
55 },
56 EnsembleAleatoric {
57 n_models: usize,
58 noise_estimation: String,
59 },
60}