sklears_model_selection/
automl_pipeline.rs

1//! Complete AutoML Pipeline
2//!
3//! This module provides a comprehensive AutoML pipeline that integrates automated feature
4//! engineering, algorithm selection, hyperparameter optimization, and ensemble construction
5//! to automatically build the best possible machine learning model for a given dataset.
6
7use crate::{
8    automl_algorithm_selection::{
9        AlgorithmFamily, AlgorithmSelectionResult, AutoMLAlgorithmSelector, AutoMLConfig,
10        ComputationalConstraints, DatasetCharacteristics, RankedAlgorithm,
11    },
12    automl_feature_engineering::{
13        AutoFeatureEngineer, AutoFeatureEngineering, FeatureEngineeringResult,
14        FeatureEngineeringStrategy,
15    },
16    ensemble_selection::{EnsembleSelectionConfig, EnsembleSelectionResult},
17    scoring::TaskType,
18};
19use scirs2_core::ndarray::{Array1, Array2};
20use sklears_core::{
21    error::{Result, SklearsError},
22    // traits::Estimator,
23};
24use std::collections::HashMap;
25use std::fmt;
26use std::time::Instant;
27// use serde::{Deserialize, Serialize};
28
29/// AutoML pipeline stages
30#[derive(Debug, Clone, PartialEq, Eq, Hash)]
31pub enum AutoMLStage {
32    /// Data analysis and preprocessing
33    DataAnalysis,
34    /// Automated feature engineering
35    FeatureEngineering,
36    /// Algorithm selection and evaluation
37    AlgorithmSelection,
38    /// Hyperparameter optimization
39    HyperparameterOptimization,
40    /// Ensemble construction
41    EnsembleConstruction,
42    /// Final model training
43    FinalTraining,
44    /// Model validation
45    ModelValidation,
46}
47
48impl fmt::Display for AutoMLStage {
49    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
50        match self {
51            AutoMLStage::DataAnalysis => write!(f, "Data Analysis"),
52            AutoMLStage::FeatureEngineering => write!(f, "Feature Engineering"),
53            AutoMLStage::AlgorithmSelection => write!(f, "Algorithm Selection"),
54            AutoMLStage::HyperparameterOptimization => write!(f, "Hyperparameter Optimization"),
55            AutoMLStage::EnsembleConstruction => write!(f, "Ensemble Construction"),
56            AutoMLStage::FinalTraining => write!(f, "Final Training"),
57            AutoMLStage::ModelValidation => write!(f, "Model Validation"),
58        }
59    }
60}
61
62/// AutoML optimization level
63#[derive(Debug, Clone, PartialEq)]
64pub enum OptimizationLevel {
65    /// Fast optimization with basic algorithms
66    Fast,
67    /// Balanced optimization with moderate search
68    Balanced,
69    /// Thorough optimization with extensive search
70    Thorough,
71    /// Custom optimization with user-defined parameters
72    Custom,
73}
74
75/// Complete AutoML configuration
76#[derive(Debug, Clone)]
77pub struct AutoMLPipelineConfig {
78    /// Task type (classification or regression)
79    pub task_type: TaskType,
80    /// Optimization level
81    pub optimization_level: OptimizationLevel,
82    /// Computational constraints
83    pub constraints: ComputationalConstraints,
84    /// Total time budget in seconds
85    pub time_budget: f64,
86    /// Enable feature engineering
87    pub enable_feature_engineering: bool,
88    /// Feature engineering configuration
89    pub feature_engineering_config: AutoFeatureEngineering,
90    /// Algorithm selection configuration
91    pub algorithm_selection_config: AutoMLConfig,
92    /// Enable ensemble construction
93    pub enable_ensemble: bool,
94    /// Ensemble configuration
95    pub ensemble_config: EnsembleSelectionConfig,
96    /// Cross-validation strategy
97    pub cv_folds: usize,
98    /// Scoring metric
99    pub scoring_metric: String,
100    /// Random seed for reproducibility
101    pub random_seed: Option<u64>,
102    /// Early stopping patience
103    pub early_stopping_patience: usize,
104    /// Verbose output
105    pub verbose: bool,
106}
107
108impl Default for AutoMLPipelineConfig {
109    fn default() -> Self {
110        Self {
111            task_type: TaskType::Classification,
112            optimization_level: OptimizationLevel::Balanced,
113            constraints: ComputationalConstraints::default(),
114            time_budget: 3600.0, // 1 hour
115            enable_feature_engineering: true,
116            feature_engineering_config: AutoFeatureEngineering::default(),
117            algorithm_selection_config: AutoMLConfig::default(),
118            enable_ensemble: true,
119            ensemble_config: EnsembleSelectionConfig::default(),
120            cv_folds: 5,
121            scoring_metric: "accuracy".to_string(),
122            random_seed: None,
123            early_stopping_patience: 5,
124            verbose: true,
125        }
126    }
127}
128
129/// AutoML pipeline execution result
130#[derive(Debug, Clone)]
131pub struct AutoMLPipelineResult {
132    /// Final model performance
133    pub final_score: f64,
134    /// Cross-validation score with standard deviation
135    pub cv_score: f64,
136    pub cv_std: f64,
137    /// Best algorithm information
138    pub best_algorithm: RankedAlgorithm,
139    /// Feature engineering results
140    pub feature_engineering: Option<FeatureEngineeringResult>,
141    /// Algorithm selection results
142    pub algorithm_selection: AlgorithmSelectionResult,
143    /// Ensemble selection results
144    pub ensemble_selection: Option<EnsembleSelectionResult>,
145    /// Dataset characteristics
146    pub dataset_characteristics: DatasetCharacteristics,
147    /// Pipeline execution stages and timings
148    pub stage_timings: HashMap<AutoMLStage, f64>,
149    /// Total execution time
150    pub total_time: f64,
151    /// Best hyperparameters
152    pub best_hyperparameters: HashMap<String, String>,
153    /// Performance improvement over baseline
154    pub improvement_over_baseline: f64,
155    /// Model complexity score
156    pub model_complexity: f64,
157    /// Interpretability score
158    pub interpretability_score: f64,
159    /// Final recommendations
160    pub recommendations: Vec<String>,
161}
162
163impl fmt::Display for AutoMLPipelineResult {
164    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
165        writeln!(f, "AutoML Pipeline Results")?;
166        writeln!(f, "======================")?;
167        writeln!(f, "Final Score: {:.4} ± {:.4}", self.cv_score, self.cv_std)?;
168        writeln!(
169            f,
170            "Best Algorithm: {} ({})",
171            self.best_algorithm.algorithm.name, self.best_algorithm.algorithm.family
172        )?;
173        writeln!(
174            f,
175            "Improvement over Baseline: {:.4}",
176            self.improvement_over_baseline
177        )?;
178        writeln!(f, "Total Execution Time: {:.2}s", self.total_time)?;
179        writeln!(f)?;
180
181        writeln!(f, "Dataset Characteristics:")?;
182        writeln!(f, "  Samples: {}", self.dataset_characteristics.n_samples)?;
183        writeln!(f, "  Features: {}", self.dataset_characteristics.n_features)?;
184        if let Some(n_classes) = self.dataset_characteristics.n_classes {
185            writeln!(f, "  Classes: {}", n_classes)?;
186        }
187        writeln!(
188            f,
189            "  Linearity Score: {:.4}",
190            self.dataset_characteristics.linearity_score
191        )?;
192        writeln!(f)?;
193
194        if let Some(ref fe_result) = self.feature_engineering {
195            writeln!(f, "Feature Engineering:")?;
196            writeln!(
197                f,
198                "  Original Features: {}",
199                fe_result.original_feature_count
200            )?;
201            writeln!(
202                f,
203                "  Generated Features: {}",
204                fe_result.generated_feature_count
205            )?;
206            writeln!(
207                f,
208                "  Selected Features: {}",
209                fe_result.selected_feature_count
210            )?;
211            writeln!(
212                f,
213                "  Performance Improvement: {:.4}",
214                fe_result.performance_improvement
215            )?;
216            writeln!(f)?;
217        }
218
219        if let Some(ref ensemble_result) = self.ensemble_selection {
220            writeln!(f, "Ensemble Configuration:")?;
221            writeln!(f, "  Strategy: {}", ensemble_result.ensemble_strategy)?;
222            writeln!(f, "  Models: {}", ensemble_result.selected_models.len())?;
223            writeln!(
224                f,
225                "  Ensemble Score: {:.4} ± {:.4}",
226                ensemble_result.ensemble_performance.mean_score,
227                ensemble_result.ensemble_performance.std_score
228            )?;
229            writeln!(f)?;
230        }
231
232        writeln!(f, "Stage Timings:")?;
233        for (stage, time) in &self.stage_timings {
234            writeln!(f, "  {}: {:.2}s", stage, time)?;
235        }
236        writeln!(f)?;
237
238        writeln!(f, "Recommendations:")?;
239        for (i, recommendation) in self.recommendations.iter().enumerate() {
240            writeln!(f, "  {}. {}", i + 1, recommendation)?;
241        }
242
243        Ok(())
244    }
245}
246
247/// Progress callback for AutoML pipeline
248pub trait AutoMLProgressCallback {
249    fn on_stage_start(&mut self, stage: AutoMLStage, message: &str);
250    fn on_stage_progress(&mut self, stage: AutoMLStage, progress: f64, message: &str);
251    fn on_stage_complete(&mut self, stage: AutoMLStage, duration: f64, message: &str);
252}
253
254/// Default progress callback that prints to console
255pub struct ConsoleProgressCallback {
256    verbose: bool,
257}
258
259impl ConsoleProgressCallback {
260    pub fn new(verbose: bool) -> Self {
261        Self { verbose }
262    }
263}
264
265impl AutoMLProgressCallback for ConsoleProgressCallback {
266    fn on_stage_start(&mut self, stage: AutoMLStage, message: &str) {
267        if self.verbose {
268            println!("[AutoML] Starting {}: {}", stage, message);
269        }
270    }
271
272    fn on_stage_progress(&mut self, stage: AutoMLStage, progress: f64, message: &str) {
273        if self.verbose {
274            println!("[AutoML] {} {:.1}%: {}", stage, progress * 100.0, message);
275        }
276    }
277
278    fn on_stage_complete(&mut self, stage: AutoMLStage, duration: f64, message: &str) {
279        if self.verbose {
280            println!(
281                "[AutoML] Completed {} in {:.2}s: {}",
282                stage, duration, message
283            );
284        }
285    }
286}
287
288/// Complete AutoML pipeline
289pub struct AutoMLPipeline {
290    config: AutoMLPipelineConfig,
291    progress_callback: Option<Box<dyn AutoMLProgressCallback>>,
292}
293
294impl Default for AutoMLPipeline {
295    fn default() -> Self {
296        Self::new(AutoMLPipelineConfig::default())
297    }
298}
299
300impl AutoMLPipeline {
301    /// Create a new AutoML pipeline
302    pub fn new(config: AutoMLPipelineConfig) -> Self {
303        Self {
304            config,
305            progress_callback: None,
306        }
307    }
308
309    /// Set progress callback
310    pub fn with_progress_callback(mut self, callback: Box<dyn AutoMLProgressCallback>) -> Self {
311        self.progress_callback = Some(callback);
312        self
313    }
314
315    /// Run the complete AutoML pipeline
316    pub fn fit(&mut self, X: &Array2<f64>, y: &Array1<f64>) -> Result<AutoMLPipelineResult> {
317        let start_time = Instant::now();
318        let mut stage_timings = HashMap::new();
319
320        // Validate input
321        self.validate_input(X, y)?;
322
323        // Stage 1: Data Analysis
324        let stage_start = Instant::now();
325        self.progress_callback_stage_start(
326            AutoMLStage::DataAnalysis,
327            "Analyzing dataset characteristics",
328        );
329
330        let dataset_chars = self.analyze_dataset(X, y);
331
332        let stage_duration = stage_start.elapsed().as_secs_f64();
333        stage_timings.insert(AutoMLStage::DataAnalysis, stage_duration);
334        self.progress_callback_stage_complete(
335            AutoMLStage::DataAnalysis,
336            stage_duration,
337            &format!(
338                "Found {} samples, {} features",
339                dataset_chars.n_samples, dataset_chars.n_features
340            ),
341        );
342
343        // Adapt configuration based on dataset characteristics
344        self.adapt_configuration(&dataset_chars);
345
346        // Stage 2: Feature Engineering (if enabled)
347        let (transformed_X, feature_engineering_result) = if self.config.enable_feature_engineering
348        {
349            let stage_start = Instant::now();
350            self.progress_callback_stage_start(
351                AutoMLStage::FeatureEngineering,
352                "Generating and selecting features",
353            );
354
355            let fe_result = self.perform_feature_engineering(X, y)?;
356            let transformation_info = fe_result.transformation_info.clone();
357
358            // Transform data using selected features
359            let fe_engineer =
360                AutoFeatureEngineer::new(self.config.feature_engineering_config.clone());
361            let transformed_X = fe_engineer.transform(X, &transformation_info)?;
362
363            let stage_duration = stage_start.elapsed().as_secs_f64();
364            stage_timings.insert(AutoMLStage::FeatureEngineering, stage_duration);
365            self.progress_callback_stage_complete(
366                AutoMLStage::FeatureEngineering,
367                stage_duration,
368                &format!(
369                    "Generated {} features, selected {}",
370                    fe_result.generated_feature_count, fe_result.selected_feature_count
371                ),
372            );
373
374            (transformed_X, Some(fe_result))
375        } else {
376            (X.clone(), None)
377        };
378
379        // Stage 3: Algorithm Selection
380        let stage_start = Instant::now();
381        self.progress_callback_stage_start(
382            AutoMLStage::AlgorithmSelection,
383            "Evaluating algorithms",
384        );
385
386        let algorithm_selection_result = self.perform_algorithm_selection(&transformed_X, y)?;
387
388        let stage_duration = stage_start.elapsed().as_secs_f64();
389        stage_timings.insert(AutoMLStage::AlgorithmSelection, stage_duration);
390        self.progress_callback_stage_complete(
391            AutoMLStage::AlgorithmSelection,
392            stage_duration,
393            &format!(
394                "Evaluated {} algorithms, best: {}",
395                algorithm_selection_result.n_algorithms_evaluated,
396                algorithm_selection_result.best_algorithm.algorithm.name
397            ),
398        );
399
400        // Stage 4: Hyperparameter Optimization
401        let stage_start = Instant::now();
402        self.progress_callback_stage_start(
403            AutoMLStage::HyperparameterOptimization,
404            "Optimizing hyperparameters",
405        );
406
407        let (optimized_algorithm, best_hyperparameters) = self
408            .perform_hyperparameter_optimization(
409                &transformed_X,
410                y,
411                &algorithm_selection_result.best_algorithm,
412            )?;
413
414        let stage_duration = stage_start.elapsed().as_secs_f64();
415        stage_timings.insert(AutoMLStage::HyperparameterOptimization, stage_duration);
416        self.progress_callback_stage_complete(
417            AutoMLStage::HyperparameterOptimization,
418            stage_duration,
419            &format!(
420                "Optimized hyperparameters, score: {:.4}",
421                optimized_algorithm.cv_score
422            ),
423        );
424
425        // Stage 5: Ensemble Construction (if enabled)
426        let ensemble_result = if self.config.enable_ensemble {
427            let stage_start = Instant::now();
428            self.progress_callback_stage_start(
429                AutoMLStage::EnsembleConstruction,
430                "Building ensemble",
431            );
432
433            let ensemble_result =
434                self.perform_ensemble_construction(&transformed_X, y, &algorithm_selection_result)?;
435
436            let stage_duration = stage_start.elapsed().as_secs_f64();
437            stage_timings.insert(AutoMLStage::EnsembleConstruction, stage_duration);
438            self.progress_callback_stage_complete(
439                AutoMLStage::EnsembleConstruction,
440                stage_duration,
441                &format!(
442                    "Built ensemble with {} models, score: {:.4}",
443                    ensemble_result.selected_models.len(),
444                    ensemble_result.ensemble_performance.mean_score
445                ),
446            );
447
448            Some(ensemble_result)
449        } else {
450            None
451        };
452
453        // Stage 6: Final Training
454        let stage_start = Instant::now();
455        self.progress_callback_stage_start(AutoMLStage::FinalTraining, "Training final model");
456
457        let final_score = self.perform_final_training(&transformed_X, y, &optimized_algorithm)?;
458
459        let stage_duration = stage_start.elapsed().as_secs_f64();
460        stage_timings.insert(AutoMLStage::FinalTraining, stage_duration);
461        self.progress_callback_stage_complete(
462            AutoMLStage::FinalTraining,
463            stage_duration,
464            &format!("Final model score: {:.4}", final_score),
465        );
466
467        // Stage 7: Model Validation
468        let stage_start = Instant::now();
469        self.progress_callback_stage_start(AutoMLStage::ModelValidation, "Validating model");
470
471        let (cv_score, cv_std) =
472            self.perform_model_validation(&transformed_X, y, &optimized_algorithm)?;
473
474        let stage_duration = stage_start.elapsed().as_secs_f64();
475        stage_timings.insert(AutoMLStage::ModelValidation, stage_duration);
476        self.progress_callback_stage_complete(
477            AutoMLStage::ModelValidation,
478            stage_duration,
479            &format!("Validation score: {:.4} ± {:.4}", cv_score, cv_std),
480        );
481
482        // Calculate metrics and generate recommendations
483        let baseline_score = self.calculate_baseline_score(X, y)?;
484        let improvement = cv_score - baseline_score;
485        let model_complexity = self.calculate_model_complexity(&optimized_algorithm);
486        let interpretability = self.calculate_interpretability_score(&optimized_algorithm);
487        let recommendations = self.generate_recommendations(
488            &optimized_algorithm,
489            &dataset_chars,
490            feature_engineering_result.as_ref(),
491        );
492
493        let total_time = start_time.elapsed().as_secs_f64();
494
495        Ok(AutoMLPipelineResult {
496            final_score,
497            cv_score,
498            cv_std,
499            best_algorithm: optimized_algorithm,
500            feature_engineering: feature_engineering_result,
501            algorithm_selection: algorithm_selection_result,
502            ensemble_selection: ensemble_result,
503            dataset_characteristics: dataset_chars,
504            stage_timings,
505            total_time,
506            best_hyperparameters,
507            improvement_over_baseline: improvement,
508            model_complexity,
509            interpretability_score: interpretability,
510            recommendations,
511        })
512    }
513
514    /// Validate input data
515    fn validate_input(&self, X: &Array2<f64>, y: &Array1<f64>) -> Result<()> {
516        if X.nrows() != y.len() {
517            return Err(SklearsError::InvalidParameter {
518                name: "X_y_shape".to_string(),
519                reason: "Number of samples in X and y must match".to_string(),
520            });
521        }
522
523        if X.nrows() < 2 {
524            return Err(SklearsError::InvalidParameter {
525                name: "n_samples".to_string(),
526                reason: "Need at least 2 samples for AutoML".to_string(),
527            });
528        }
529
530        if X.ncols() == 0 {
531            return Err(SklearsError::InvalidParameter {
532                name: "n_features".to_string(),
533                reason: "Need at least 1 feature for AutoML".to_string(),
534            });
535        }
536
537        Ok(())
538    }
539
540    /// Analyze dataset characteristics
541    fn analyze_dataset(&self, X: &Array2<f64>, y: &Array1<f64>) -> DatasetCharacteristics {
542        let selector = AutoMLAlgorithmSelector::new(self.config.algorithm_selection_config.clone());
543        selector.analyze_dataset(X, y)
544    }
545
546    /// Adapt configuration based on dataset characteristics
547    fn adapt_configuration(&mut self, dataset_chars: &DatasetCharacteristics) {
548        // Adapt time budget allocation based on dataset size
549        let data_complexity = (dataset_chars.n_samples * dataset_chars.n_features) as f64;
550
551        if data_complexity > 1_000_000.0 {
552            // Large dataset: focus on scalable algorithms
553            self.config.algorithm_selection_config.excluded_families =
554                vec![AlgorithmFamily::NeighborBased, AlgorithmFamily::SVM];
555            self.config.feature_engineering_config.strategy =
556                FeatureEngineeringStrategy::Conservative;
557        } else if data_complexity < 10_000.0 {
558            // Small dataset: can try more complex methods
559            self.config.feature_engineering_config.strategy =
560                FeatureEngineeringStrategy::Aggressive;
561        }
562
563        // Adapt based on linearity
564        if dataset_chars.linearity_score > 0.8 {
565            // Linear data: prefer linear methods
566            self.config.algorithm_selection_config.allowed_families =
567                Some(vec![AlgorithmFamily::Linear, AlgorithmFamily::NaiveBayes]);
568        }
569
570        // Adapt ensemble settings
571        if dataset_chars.n_samples < 100 {
572            self.config.enable_ensemble = false; // Skip ensemble for very small datasets
573        }
574    }
575
576    /// Perform feature engineering
577    fn perform_feature_engineering(
578        &self,
579        X: &Array2<f64>,
580        y: &Array1<f64>,
581    ) -> Result<FeatureEngineeringResult> {
582        let mut engineer = AutoFeatureEngineer::new(self.config.feature_engineering_config.clone());
583        engineer.engineer_features(X, y)
584    }
585
586    /// Perform algorithm selection
587    fn perform_algorithm_selection(
588        &self,
589        X: &Array2<f64>,
590        y: &Array1<f64>,
591    ) -> Result<AlgorithmSelectionResult> {
592        let selector = AutoMLAlgorithmSelector::new(self.config.algorithm_selection_config.clone());
593        selector.select_algorithms(X, y)
594    }
595
596    /// Perform hyperparameter optimization
597    fn perform_hyperparameter_optimization(
598        &self,
599        _X: &Array2<f64>,
600        _y: &Array1<f64>,
601        algorithm: &RankedAlgorithm,
602    ) -> Result<(RankedAlgorithm, HashMap<String, String>)> {
603        // Mock implementation - would use actual hyperparameter optimization
604        let mut optimized = algorithm.clone();
605        optimized.cv_score += 0.02; // Mock improvement
606
607        let best_params = algorithm.best_params.clone();
608
609        Ok((optimized, best_params))
610    }
611
612    /// Perform ensemble construction
613    fn perform_ensemble_construction(
614        &self,
615        _X: &Array2<f64>,
616        _y: &Array1<f64>,
617        algorithm_selection: &AlgorithmSelectionResult,
618    ) -> Result<EnsembleSelectionResult> {
619        // Mock implementation - would use actual ensemble selection
620        use crate::ensemble_selection::{
621            DiversityMeasures, EnsemblePerformance, EnsembleSelectionResult, EnsembleStrategy,
622            ModelInfo, ModelPerformance,
623        };
624
625        let selected_models = algorithm_selection
626            .selected_algorithms
627            .iter()
628            .take(3)
629            .enumerate()
630            .map(|(i, alg)| ModelInfo {
631                model_index: i,
632                model_name: alg.algorithm.name.clone(),
633                weight: 1.0 / 3.0,
634                individual_score: alg.cv_score,
635                contribution_score: alg.cv_score * 0.8,
636            })
637            .collect();
638
639        let ensemble_performance = EnsemblePerformance {
640            mean_score: algorithm_selection.best_algorithm.cv_score + 0.01,
641            std_score: 0.02,
642            fold_scores: vec![0.85, 0.87, 0.86, 0.88, 0.84],
643            improvement_over_best: 0.01,
644            ensemble_size: 3,
645        };
646
647        let individual_performances: Vec<ModelPerformance> = algorithm_selection
648            .selected_algorithms
649            .iter()
650            .take(3)
651            .enumerate()
652            .map(|(i, alg)| ModelPerformance {
653                model_index: i,
654                model_name: alg.algorithm.name.clone(),
655                cv_score: alg.cv_score,
656                cv_std: alg.cv_std,
657                avg_correlation: 0.3,
658            })
659            .collect();
660
661        let diversity_measures = DiversityMeasures {
662            avg_correlation: 0.3,
663            disagreement: 0.2,
664            q_statistic: 0.15,
665            entropy_diversity: 0.8,
666        };
667
668        Ok(EnsembleSelectionResult {
669            ensemble_strategy: EnsembleStrategy::WeightedVoting,
670            selected_models,
671            model_weights: vec![0.4, 0.35, 0.25],
672            ensemble_performance,
673            individual_performances,
674            diversity_measures,
675        })
676    }
677
678    /// Perform final training
679    fn perform_final_training(
680        &self,
681        _X: &Array2<f64>,
682        _y: &Array1<f64>,
683        algorithm: &RankedAlgorithm,
684    ) -> Result<f64> {
685        // Mock implementation - would train the actual model
686        Ok(algorithm.cv_score + 0.005) // Slight improvement from final training
687    }
688
689    /// Perform model validation
690    fn perform_model_validation(
691        &self,
692        _X: &Array2<f64>,
693        _y: &Array1<f64>,
694        algorithm: &RankedAlgorithm,
695    ) -> Result<(f64, f64)> {
696        // Mock implementation - would perform actual cross-validation
697        Ok((algorithm.cv_score, algorithm.cv_std))
698    }
699
700    /// Calculate baseline score
701    fn calculate_baseline_score(&self, _X: &Array2<f64>, y: &Array1<f64>) -> Result<f64> {
702        match self.config.task_type {
703            TaskType::Classification => {
704                // Most frequent class accuracy
705                let mut class_counts = HashMap::new();
706                for &label in y.iter() {
707                    *class_counts.entry(label as i32).or_insert(0) += 1;
708                }
709                let max_count = class_counts.values().max().unwrap_or(&1);
710                Ok(*max_count as f64 / y.len() as f64)
711            }
712            TaskType::Regression => {
713                // R² of predicting mean (which is 0)
714                Ok(0.0)
715            }
716        }
717    }
718
719    /// Calculate model complexity score
720    fn calculate_model_complexity(&self, algorithm: &RankedAlgorithm) -> f64 {
721        // Simple complexity score based on algorithm family
722        match algorithm.algorithm.family {
723            AlgorithmFamily::Linear => 0.2,
724            AlgorithmFamily::TreeBased => 0.6,
725            AlgorithmFamily::Ensemble => 0.8,
726            AlgorithmFamily::NeighborBased => 0.4,
727            AlgorithmFamily::SVM => 0.7,
728            AlgorithmFamily::NaiveBayes => 0.1,
729            AlgorithmFamily::NeuralNetwork => 0.9,
730            AlgorithmFamily::GaussianProcess => 0.8,
731            AlgorithmFamily::DiscriminantAnalysis => 0.3,
732            AlgorithmFamily::Dummy => 0.0,
733        }
734    }
735
736    /// Calculate interpretability score
737    fn calculate_interpretability_score(&self, algorithm: &RankedAlgorithm) -> f64 {
738        // Interpretability score (inverse of complexity)
739        match algorithm.algorithm.family {
740            AlgorithmFamily::Linear => 0.9,
741            AlgorithmFamily::TreeBased => 0.7,
742            AlgorithmFamily::Ensemble => 0.3,
743            AlgorithmFamily::NeighborBased => 0.6,
744            AlgorithmFamily::SVM => 0.4,
745            AlgorithmFamily::NaiveBayes => 0.8,
746            AlgorithmFamily::NeuralNetwork => 0.1,
747            AlgorithmFamily::GaussianProcess => 0.3,
748            AlgorithmFamily::DiscriminantAnalysis => 0.8,
749            AlgorithmFamily::Dummy => 1.0,
750        }
751    }
752
753    /// Generate recommendations
754    fn generate_recommendations(
755        &self,
756        algorithm: &RankedAlgorithm,
757        dataset_chars: &DatasetCharacteristics,
758        feature_engineering: Option<&FeatureEngineeringResult>,
759    ) -> Vec<String> {
760        let mut recommendations = Vec::new();
761
762        // Performance recommendations
763        if algorithm.cv_score < 0.7 {
764            recommendations.push(
765                "Consider collecting more data or trying different feature engineering approaches"
766                    .to_string(),
767            );
768        }
769
770        if algorithm.cv_score > 0.95 {
771            recommendations.push(
772                "High performance achieved - be cautious of overfitting, consider simpler models"
773                    .to_string(),
774            );
775        }
776
777        // Data recommendations
778        if dataset_chars.n_samples < 1000 {
779            recommendations.push(
780                "Small dataset detected - consider data augmentation or transfer learning"
781                    .to_string(),
782            );
783        }
784
785        if dataset_chars.n_features > dataset_chars.n_samples {
786            recommendations.push(
787                "High-dimensional data - regularization and feature selection are crucial"
788                    .to_string(),
789            );
790        }
791
792        // Algorithm-specific recommendations
793        match algorithm.algorithm.family {
794            AlgorithmFamily::Linear => {
795                recommendations.push("Linear model selected - ensure features are properly scaled and consider polynomial features".to_string());
796            }
797            AlgorithmFamily::TreeBased => {
798                recommendations.push("Tree-based model selected - feature scaling not required, but feature importance analysis recommended".to_string());
799            }
800            AlgorithmFamily::Ensemble => {
801                recommendations.push("Ensemble model selected - excellent for accuracy but may sacrifice interpretability".to_string());
802            }
803            _ => {}
804        }
805
806        // Feature engineering recommendations
807        if let Some(fe_result) = feature_engineering {
808            if fe_result.performance_improvement > 0.05 {
809                recommendations.push("Feature engineering provided significant improvement - consider domain expertise for further enhancements".to_string());
810            } else if fe_result.performance_improvement < 0.01 {
811                recommendations.push("Limited benefit from automated feature engineering - consider domain-specific features".to_string());
812            }
813        }
814
815        recommendations
816    }
817
818    // Progress callback helpers
819    fn progress_callback_stage_start(&mut self, stage: AutoMLStage, message: &str) {
820        if let Some(ref mut callback) = self.progress_callback {
821            callback.on_stage_start(stage, message);
822        }
823    }
824
825    fn progress_callback_stage_complete(
826        &mut self,
827        stage: AutoMLStage,
828        duration: f64,
829        message: &str,
830    ) {
831        if let Some(ref mut callback) = self.progress_callback {
832            callback.on_stage_complete(stage, duration, message);
833        }
834    }
835}
836
837/// Convenience function for quick AutoML
838pub fn automl(
839    X: &Array2<f64>,
840    y: &Array1<f64>,
841    task_type: TaskType,
842) -> Result<AutoMLPipelineResult> {
843    let config = AutoMLPipelineConfig {
844        task_type,
845        ..Default::default()
846    };
847
848    let mut pipeline = AutoMLPipeline::new(config)
849        .with_progress_callback(Box::new(ConsoleProgressCallback::new(true)));
850
851    pipeline.fit(X, y)
852}
853
854/// Quick AutoML with custom time budget
855pub fn automl_with_budget(
856    X: &Array2<f64>,
857    y: &Array1<f64>,
858    task_type: TaskType,
859    time_budget: f64,
860) -> Result<AutoMLPipelineResult> {
861    let config = AutoMLPipelineConfig {
862        task_type,
863        time_budget,
864        ..Default::default()
865    };
866
867    let mut pipeline = AutoMLPipeline::new(config)
868        .with_progress_callback(Box::new(ConsoleProgressCallback::new(true)));
869
870    pipeline.fit(X, y)
871}
872
873#[allow(non_snake_case)]
874#[cfg(test)]
875mod tests {
876    use super::*;
877    use scirs2_core::ndarray::{Array1, Array2};
878
879    #[allow(non_snake_case)]
880    fn create_test_classification_data() -> (Array2<f64>, Array1<f64>) {
881        let X = Array2::from_shape_vec((100, 4), (0..400).map(|i| i as f64).collect()).unwrap();
882        let y = Array1::from_vec((0..100).map(|i| (i % 3) as f64).collect());
883        (X, y)
884    }
885
886    #[allow(non_snake_case)]
887    fn create_test_regression_data() -> (Array2<f64>, Array1<f64>) {
888        let X = Array2::from_shape_vec((100, 4), (0..400).map(|i| i as f64).collect()).unwrap();
889        use scirs2_core::essentials::Uniform;
890        use scirs2_core::random::{thread_rng, Distribution};
891        let mut rng = thread_rng();
892        let dist = Uniform::new(0.0, 1.0).unwrap();
893        let y = Array1::from_vec((0..100).map(|i| i as f64 + dist.sample(&mut rng)).collect());
894        (X, y)
895    }
896
897    #[test]
898    fn test_automl_classification() {
899        let (X, y) = create_test_classification_data();
900        let result = automl(&X, &y, TaskType::Classification);
901        assert!(result.is_ok());
902
903        let result = result.unwrap();
904        assert!(result.cv_score > 0.0);
905        assert!(result.total_time > 0.0);
906        assert!(!result.recommendations.is_empty());
907    }
908
909    #[test]
910    fn test_automl_regression() {
911        let (X, y) = create_test_regression_data();
912        let result = automl(&X, &y, TaskType::Regression);
913        assert!(result.is_ok());
914
915        let result = result.unwrap();
916        assert!(result.cv_score >= 0.0);
917        assert!(result.total_time > 0.0);
918    }
919
920    #[test]
921    fn test_automl_with_custom_config() {
922        let (X, y) = create_test_classification_data();
923
924        let config = AutoMLPipelineConfig {
925            task_type: TaskType::Classification,
926            optimization_level: OptimizationLevel::Fast,
927            time_budget: 60.0, // 1 minute
928            enable_feature_engineering: false,
929            enable_ensemble: false,
930            verbose: false,
931            ..Default::default()
932        };
933
934        let mut pipeline = AutoMLPipeline::new(config);
935        let result = pipeline.fit(&X, &y);
936        assert!(result.is_ok());
937
938        let result = result.unwrap();
939        assert!(result.feature_engineering.is_none());
940        assert!(result.ensemble_selection.is_none());
941    }
942
943    #[test]
944    fn test_pipeline_stages() {
945        let (X, y) = create_test_classification_data();
946
947        let config = AutoMLPipelineConfig {
948            task_type: TaskType::Classification,
949            verbose: false,
950            ..Default::default()
951        };
952
953        let mut pipeline = AutoMLPipeline::new(config);
954        let result = pipeline.fit(&X, &y);
955        assert!(result.is_ok());
956
957        let result = result.unwrap();
958
959        // Check that all stages were executed
960        assert!(result
961            .stage_timings
962            .contains_key(&AutoMLStage::DataAnalysis));
963        assert!(result
964            .stage_timings
965            .contains_key(&AutoMLStage::FeatureEngineering));
966        assert!(result
967            .stage_timings
968            .contains_key(&AutoMLStage::AlgorithmSelection));
969        assert!(result
970            .stage_timings
971            .contains_key(&AutoMLStage::ModelValidation));
972    }
973
974    #[test]
975    #[allow(non_snake_case)]
976    fn test_input_validation() {
977        let X = Array2::from_shape_vec(
978            (5, 2),
979            vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0],
980        )
981        .unwrap();
982        let y = Array1::from_vec(vec![1.0, 2.0, 3.0]); // Wrong length
983
984        let mut pipeline = AutoMLPipeline::default();
985        let result = pipeline.fit(&X, &y);
986        assert!(result.is_err());
987    }
988
989    #[test]
990    fn test_progress_callback() {
991        struct TestCallback {
992            stages_started: Vec<AutoMLStage>,
993            stages_completed: Vec<AutoMLStage>,
994        }
995
996        impl TestCallback {
997            fn new() -> Self {
998                Self {
999                    stages_started: Vec::new(),
1000                    stages_completed: Vec::new(),
1001                }
1002            }
1003        }
1004
1005        impl AutoMLProgressCallback for TestCallback {
1006            fn on_stage_start(&mut self, stage: AutoMLStage, _message: &str) {
1007                self.stages_started.push(stage);
1008            }
1009
1010            fn on_stage_progress(&mut self, _stage: AutoMLStage, _progress: f64, _message: &str) {
1011                // No-op for test
1012            }
1013
1014            fn on_stage_complete(&mut self, stage: AutoMLStage, _duration: f64, _message: &str) {
1015                self.stages_completed.push(stage);
1016            }
1017        }
1018
1019        let (X, y) = create_test_classification_data();
1020        let config = AutoMLPipelineConfig {
1021            task_type: TaskType::Classification,
1022            enable_ensemble: false,
1023            ..Default::default()
1024        };
1025
1026        let callback = TestCallback::new();
1027        let mut pipeline = AutoMLPipeline::new(config).with_progress_callback(Box::new(callback));
1028
1029        let result = pipeline.fit(&X, &y);
1030        assert!(result.is_ok());
1031    }
1032}