Crate sklears_model_selection

Crate sklears_model_selection 

Source
Expand description

Model selection utilities for sklears

Structs§

AblationAnalyzer
Ablation study analyzer
AblationConfig
Configuration for ablation studies
AblationResult
Result of ablation study
AdaptationConfig
AdaptiveAllocationConfig
Configuration for adaptive resource allocation
AdaptiveEarlyStopping
Adaptive early stopping that adjusts parameters based on optimization progress
AdaptiveFidelitySelector
Adaptive fidelity selector
AdaptiveResourceAllocator
Adaptive resource allocator
AdversarialStatistics
Detailed statistics from adversarial validation
AdversarialValidationConfig
Configuration for adversarial validation
AdversarialValidationResult
Results from adversarial validation
AdversarialValidator
Adversarial validator for detecting data leakage and distribution shifts
AleatoricUncertaintyConfig
AleatoricUncertaintyQuantifier
AleatoricUncertaintyResult
AlgorithmSelectionResult
Result of algorithm selection process
AlgorithmSpec
Specific algorithm within a family
AllocationPlan
Plan for resource allocation
AllocationStatistics
Statistics about resource allocation
ArchitectureEvaluation
Architecture evaluation result
ArchitectureSearchSpace
Architecture search space definition
AutoFeatureEngineer
Automated feature engineering engine
AutoFeatureEngineering
Configuration for automated feature engineering
AutoMLAlgorithmSelector
Automated algorithm selector
AutoMLConfig
Configuration for automated algorithm selection
AutoMLDatasetCharacteristics
Dataset characteristics for algorithm selection
AutoMLPipeline
Complete AutoML pipeline
AutoMLPipelineConfig
Complete AutoML configuration
AutoMLPipelineResult
AutoML pipeline execution result
BMAConfig
BMAResult
BMA_Averager
BMA_ModelInfo
BayesSearchCV
Bayesian Search Cross-Validator
BayesSearchConfig
Configuration for Bayesian Search
BayesianModelSelectionResult
Result of Bayesian model selection
BayesianModelSelector
Bayesian model selector
BayesianModelSelector_BA
Model averaging using Bayesian weights
BiasVarianceAnalyzer
Bias-variance decomposition analyzer
BiasVarianceConfig
Configuration for bias-variance decomposition
BiasVarianceResult
Results of bias-variance decomposition analysis
BlockCrossValidator
Block cross-validation for time series or sequential data
BlockedTemporalCV
Blocked temporal cross-validator for handling irregular time series
BlockedTimeSeriesCV
Blocked Time Series Cross-Validation
BootstrapCV
Bootstrap cross-validator with confidence interval estimation
BudgetAllocator
Budget allocator
CVConfig
Cross-validation configuration
CVModelScore
Cross-validation scores for a model
CVModelSelectionConfig
Configuration for cross-validation model selection
CVModelSelectionResult
Result of cross-validation model selection
CVModelSelector
Cross-validation model selector
CategoricalParameter
Categorical parameter definition with enhanced features
ClassStatistics
ClosureScorer
Custom scoring function wrapper for closures
ClusterInfo
CoarseToFineConfig
Configuration for coarse-to-fine optimization
CoarseToFineOptimizer
Coarse-to-fine optimizer
CoarseToFineResult
Result of coarse-to-fine optimization
ComplexityAnalysisConfig
Configuration for complexity analysis
ComplexityAnalysisResult
Result of model complexity analysis
ComplexityMeasures
Complexity measures of the dataset
ComprehensiveImportanceResult
Comprehensive importance analysis result
ComputationalConstraints
Computational constraints for algorithm selection
ConditionalParameter
Conditional parameter definition
ConfigAllocation
Allocation for a specific configuration
ConfigManager
Configuration manager for loading, saving, and validating configurations
ConfigurationWithPerformance
Configuration with performance information
ConformalPredictionConfig
Configuration for conformal prediction
ConformalPredictionResult
Results from conformal prediction
ConformalPredictor
Conformal predictor for regression and classification
ConsoleProgressCallback
Default progress callback that prints to console
ConvergenceMetrics
Convergence metrics for monitoring optimization progress
CoverageStatistics
Coverage statistics for conformal prediction
CrossValidateResult
Result of cross_validate
CrossValidatedIC
Model selection using information criteria with cross-validation
CustomCrossValidator
DataChunk
Streaming data chunk
DatasetCharacteristics
Dataset characteristics for meta-learning
DistributionShiftMetrics
Metrics for measuring distribution shift
DiversityAnalysis
Diversity analysis results
DiversityMeasures
Diversity measures for the ensemble
DriftDetectionConfig
Configuration for drift detection
DriftDetectionResult
Results from drift detection
DriftDetector
Drift detector for monitoring data distribution changes
DriftEvent
Detected drift event
DriftStatistics
Detailed drift statistics
ESConfig
Early stopping configuration
EarlyStoppingConfig
Early stopping criterion configuration
EarlyStoppingMonitor
Early stopping monitor
EfficiencyMetrics
Efficiency metrics for conformal prediction
EnhancedScorer
Enhanced scorer that supports multiple metrics and confidence intervals
EnsembleEvaluationConfig
Ensemble evaluation configuration
EnsembleEvaluationResult
Ensemble evaluation result
EnsembleEvaluator
Ensemble evaluator
EnsembleModelInfo
Information about a model in the ensemble
EnsemblePerformance
Performance metrics for the ensemble
EnsemblePerformanceMetrics
Comprehensive ensemble performance metrics
EnsembleSelectionConfig
Configuration for ensemble selection
EnsembleSelectionResult
Result of ensemble model selection
EnsembleSelector
Ensemble model selector
EpistemicUncertaintyConfig
EpistemicUncertaintyQuantifier
EpistemicUncertaintyResult
Evaluation
Single evaluation record
EvaluationRecord
Historical evaluation record
EvaluationResult
Individual evaluation result
ExperienceReplayBuffer
Experience replay buffer
ExperienceReplayConfig
Experience replay configuration
FANOVAAnalyzer
Functional ANOVA analyzer
FANOVAConfig
Configuration for fANOVA analysis
FANOVAResult
Result of fANOVA analysis
FeatureEngineeringResult
Result of feature engineering process
FeatureStatistics
Statistical properties of a feature
FewShotConfig
Few-shot optimization configuration
FewShotOptimizer
Few-shot hyperparameter optimizer
FewShotResult
Few-shot optimization result
FidelityEvaluation
Evaluation result at a specific fidelity
FixedThresholdClassifier
Fixed threshold classifier wrapper
GeneratedFeature
Generated feature information
GridSearchCV
Grid search cross-validation
GridSearchResults
Results from grid search cross-validation
GroupKFold
Group K-Fold cross-validator with custom group definitions
GroupShuffleSplit
Group Shuffle Split cross-validator
HalvingGridSearch
HalvingGridSearch implementation
HalvingGridSearchConfig
Configuration for HalvingGridSearch
HalvingGridSearchResults
Results from HalvingGridSearch
HalvingRandomSearchCV
Randomized search with successive halving for efficient hyperparameter optimization
HierarchicalCrossValidator
HierarchicalSplit
HierarchicalValidationConfig
HierarchicalValidationResult
HookManager
Hook manager for managing multiple hooks
HyperparameterImportanceAnalyzer
Comprehensive hyperparameter importance analyzer
ICModelComparisonResult
Comparison result for multiple models
ImbalancedCrossValidator
ImbalancedSplit
ImbalancedValidationConfig
ImbalancedValidationResult
IncrementalEvaluationConfig
Incremental evaluation configuration
IncrementalEvaluationResult
Incremental evaluation result
IncrementalEvaluator
Incremental evaluator
InformationCriterionCalculator
Information criterion calculator
InformationCriterionResult
Result of information criterion calculation
JackknifeConformalPredictor
Jackknife+ conformal prediction for better efficiency
KFold
K-Fold cross-validation iterator
LabelStatistics
Learn2OptimizeConfig
Learning-to-optimize configuration
Learn2OptimizeResult
Result of learning-to-optimize
LearnedOptimizer
Learned optimizer
LearningCurveResult
Learning curve results
LeaveOneGroupOut
Leave One Group Out cross-validator
LeaveOneOut
Leave-One-Out cross-validator
LeaveOneRegionOut
Leave-one-region-out cross-validator for spatial data
LeavePGroupsOut
Leave P Groups Out cross-validator
LeavePOut
Leave-P-Out cross-validator
LoggingHook
Simple logging hook
MemberContribution
Individual member contribution analysis
MemoryEfficiencyStats
Memory efficiency statistics
MemoryEfficientConfig
Configuration for memory-efficient operations
MemoryEfficientCrossValidator
Memory-efficient cross-validation evaluator
MemoryPool
Memory pool for frequently allocated objects
MemorySnapshot
Memory usage snapshot
MemoryTracker
Memory usage tracking and management
MetaLearningConfig
Meta-learning configuration
MetaLearningEngine
Meta-learning engine
MetaLearningRecommendation
Meta-learning recommendations
MetaOptimizationExperience
Optimization experience from historical data
MetaOptimizationTask
Optimization task for few-shot learning
MetaParameterRange
MetaTaskCharacteristics
Task characteristics for transfer learning
MetricRegistry
Metric registry
MiddlewarePipeline
Middleware pipeline
ModelComparisonPair
Pairwise model comparison result
ModelComparisonResult
Result of multiple model comparison
ModelComplexityAnalyzer
Model complexity analyzer
ModelEvidenceData
Data required for evidence estimation
ModelPerformance
Performance metrics for individual models
ModelRanking
Ranking information for a model
ModelSelectionConfig
Main configuration structure for model selection operations
MonteCarloCV
Monte Carlo Cross-Validation with random subsampling
MultiFidelityConfig
Multi-fidelity optimization configuration
MultiFidelityOptimizer
Multi-fidelity Bayesian optimizer
MultiFidelityResult
Multi-fidelity optimization result
MultiLabelCrossValidator
MultiLabelSplit
MultiLabelValidationConfig
MultiLabelValidationResult
MultiObjectiveAnalysis
Multi-objective analysis results
NASConfig
NAS configuration
NASOptimizer
Neural Architecture Search optimizer
NASResult
NAS optimization result
NestedCVResult
Result of nested cross-validation
NeuralArchitecture
Neural network architecture representation
NoiseConfig
NoiseInjector
NoiseStatistics
NormalizationMiddleware
Parameter normalization middleware
OODConfidenceIntervals
Confidence intervals for OOD validation metrics
OODValidationConfig
Configuration for out-of-distribution validation
OODValidationResult
Results from out-of-distribution validation
OODValidator
Out-of-Distribution Validator
OptiConfig
Hyperparameter optimization configuration
OptimizationExperience_Advanced
Optimization experience
OptimizationHistory
Optimization history store
OptimizationRecord
Historical optimization record
OptimizationStatistics
Statistics about optimization history
OutOfBagScores
Out-of-bag evaluation scores
OverfittingDetector
Overfitting detector for time series data
ParallelOptimizationConfig
Parallel optimization configuration
ParallelOptimizationResult
Parallel optimization result
ParallelOptimizer
Parallel hyperparameter optimizer
ParameterImportanceAnalyzer
Parameter importance analyzer
ParameterSensitivity
Sensitivity of a single parameter
ParameterSpace
Enhanced parameter space with categorical parameter support
PerformanceSnapshot
Performance snapshot at a specific time
PermutationTestResult
Result of permutation test
PluginConfig
Configuration for plugins
PluginFactory
Plugin factory for creating plugin instances
PluginOptimizationHistory
Optimization history
PluginParameterConstraints
Parameter constraints for optimization
PluginRegistry
Global plugin registry
PredefinedSplit
Predefined Split cross-validator
ProgressReportingConfig
Progress reporting configuration
ProgressiveAllocationConfig
Configuration for progressive resource allocation
ProgressiveAllocator
Progressive resource allocator
ProgressivePerformance
Progressive performance analysis
PurgedGroupTimeSeriesSplit
Purged Group Time Series Split for financial data
RandomizedSearchCV
Randomized search cross-validation
RankedAlgorithm
Algorithm with performance ranking
ReliabilityDiagram
ReliabilityMetrics
RepeatedKFold
Repeated K-Fold cross-validator
RepeatedStratifiedKFold
Repeated Stratified K-Fold cross-validator
ReplayResult
Result of replay update
ResourceConfig
Resource and performance configuration
ResourceConfiguration
Configuration being evaluated with allocated resources
ResourceUtilization
Resource utilization metrics
RobustnessMetrics
Robustness metrics for validation
RobustnessTestResult
SHAPAnalyzer
SHAP value analyzer for hyperparameters
SHAPConfig
Configuration for SHAP value computation
SHAPResult
Result of SHAP analysis
SampleBiasVariance
Bias-variance results for individual test samples
ScenarioResult
Individual scenario result
ScoreConfig
Scoring configuration
ScorerRegistry
Scorer registry for built-in and custom scorers
ScoringConfig
Enhanced scoring configuration
ScoringResult
Scoring result with confidence intervals and multiple metrics
SeasonalCrossValidator
Seasonal cross-validator for time series with seasonal patterns
SensitivityAnalyzer
Sensitivity analyzer using various methods
SensitivityConfig
Configuration for sensitivity analysis
SensitivityResult
Result of sensitivity analysis
ShuffleSplit
Shuffle Split cross-validator
SignificanceTestResult
Statistical significance test result
SpatialCoordinate
Spatial coordinates for geographic data
SpatialCrossValidator
Spatial cross-validator that accounts for spatial autocorrelation
SpatialValidationConfig
Configuration for spatial cross-validation
StabilityAnalysis
Stability analysis results
StatisticalMeasures
Statistical measures of the dataset
StatisticalTestResult
Statistical test result
StratifiedGroupKFold
Stratified Group K-Fold cross-validator
StratifiedKFold
Stratified K-Fold cross-validation iterator
StratifiedRegressionKFold
Stratified K-Fold cross-validation for regression tasks
StratifiedShuffleSplit
Stratified Shuffle Split cross-validator
StreamingDataReader
Streaming data reader for memory-efficient processing
StreamingEvaluationResult
Result from streaming evaluation
StreamingStatistics
Streaming statistics
TPEConfig
Configuration for TPE optimizer
TPEOptimizer
Tree-structured Parzen Estimator (TPE) for hyperparameter optimization
TargetStatistics
Target statistics for regression tasks
TemporalCrossValidator
Time series cross-validator with temporal dependency awareness
TemporalValidationConfig
Configuration for temporal validation
ThresholdOptimizationResult
Threshold optimization results
TimeSeriesSplit
Time Series Split cross-validator with gap and overlapping support
TransferLearning
Transfer learning for warm-start across similar problems
TransferLearningConfig
Configuration for transfer learning optimizer
TransferLearningOptimizer
Transfer learning optimizer
TransferResult
Result of transfer learning
TransformationInfo
Information needed to transform new data
TunedThresholdClassifierCV
Tuned threshold classifier with cross-validation
TunedThresholdClassifierCVTrained
Trained tuned threshold classifier
UncertaintyComponents
UncertaintyDecomposition
UncertaintyQuantificationConfig
UncertaintyQuantificationResult
UncertaintyQuantifier
ValidationCurveResult
Validation curve results
WarmStartConfig
Configuration for warm-start mechanisms
WarmStartInitializer
Warm-start initializer
WorkerStatistics
Worker-specific statistics
WorstCaseScenarioGenerator
Worst-case scenario generator
WorstCaseValidationConfig
Worst-case validation configuration
WorstCaseValidationResult
Worst-case validation result
WorstCaseValidator
Worst-case validator

Enums§

AcquisitionFunction
Acquisition functions for multi-fidelity optimization
AdaptationCriterion
Criteria for adaptive window sizing
AdaptiveFidelityStrategy
Adaptive fidelity selection strategy
AdversarialAttackMethod
Adversarial attack methods
AdversarialMethod
AleatoricUncertaintyMethod
AlgorithmFamily
Algorithm family categories for classification and regression
AllocationStrategy
Resource allocation strategy
AutoMLStage
AutoML pipeline stages
BatchAcquisitionStrategy
Batch acquisition strategies for parallel Bayesian optimization
BayesAcquisitionFunction
Acquisition functions for Bayesian optimization
BayesParamDistribution
Parameter distribution types for Bayesian search
BudgetAllocationStrategy
Budget allocation strategy
CalibrationMethod
CoarseToFineStrategy
Coarse-to-fine optimization strategy
CommunicationProtocol
Communication protocols for distributed optimization
ComplexityMeasure
Complexity measures for different types of models
ComplexityRecommendation
Recommendations based on complexity analysis
ConceptDriftHandling
Concept drift handling strategies
ConfigError
Configuration management error types
CorrelationModel
Models for correlation between fidelities
CorruptionType
Corruption types for features
CostModel
Cost models for different fidelity levels
DistanceMethod
Distance calculation methods
DistributionShiftType
Distribution shift types
DiversityMeasure
Diversity measures for ensemble evaluation
DriftDetectionMethod
Drift detection methods
DriftDetectorType
Types of drift detectors
DriftPattern
Drift patterns for temporal data
DriftType
Types of detected drift
EarlyStoppingStrategy
Different early stopping strategies
EnsembleEvaluationStrategy
Ensemble evaluation strategies
EnsembleStrategy
Ensemble composition strategies
EpistemicUncertaintyMethod
ErrorHandlingStrategy
Error handling strategies
EvidenceEstimationMethod
Methods for estimating the evidence (marginal likelihood)
EvidenceMethod
FeatureEngineeringStrategy
Feature engineering strategies
FeatureSelectionMethod
Feature selection methods
FeatureTransformationType
Types of feature transformations
FeatureType
Feature types
FewShotAlgorithm
Few-shot learning algorithms
FidelityLevel
Fidelity levels for multi-fidelity optimization
FidelityProgression
Fidelity progression strategies
FidelitySelectionMethod
Methods for selecting fidelity levels
FoldUpdateStrategy
Strategies for updating folds in streaming CV
GridParameterValue
A parameter value that can be of different types
GroupStrategy
Strategy for defining groups in GroupKFold
HierarchicalStrategy
HookError
Hook error type
ImbalancedStrategy
ImportanceWeightingMethod
Importance weighting methods for instance transfer
IncrementalEvaluationStrategy
Incremental evaluation strategies
InformationCriterion
Types of information criteria
LoadBalancingStrategy
Load balancing strategies for parallel execution
MemoryError
Memory-efficient evaluation errors
MetaLearningStrategy
Meta-learning strategies for hyperparameter initialization
MetricError
Metric error type
MiddlewareError
Middleware error type
MissingPattern
Missing data patterns
ModelSelectionCriteria
Model selection criteria
MultiFidelityStrategy
Multi-fidelity optimization strategies
MultiLabelStrategy
MultipleTestingCorrection
Multiple testing correction methods
NASStrategy
Neural Architecture Search strategies
NoisePattern
Label noise patterns
NoiseType
NonconformityMethod
Methods for computing nonconformity scores
OODDetectionMethod
Out-of-Distribution detection methods
OptimizationLevel
AutoML optimization level
OptimizationMetric
Metric to optimize when tuning threshold
OptimizerArchitecture
Learned optimizer architectures
ParallelStrategy
Parallel optimization strategies
ParameterConstraint
Parameter constraint type
ParameterDefinition
Parameter definition for optimization
ParameterDistribution
Parameter distribution for randomized search
ParameterScale
ParameterValue
Parameter value types
PluginError
Plugin error type
PriorType
PrioritizationStrategy
Prioritization strategies for experience replay
ProgressiveAllocationStrategy
Progressive resource allocation strategy
ReplaySamplingStrategy
Sampling strategies
SamplingStrategy
Scoring
Scoring method for cross-validation
SimilarityMetric
Similarity metrics for dataset comparison
SpatialClusteringMethod
Spatial clustering methods for grouping
StabilityMetric
Stability metrics for ensemble evaluation
StopReason
Reason for stopping optimization
SurrogateModel
Surrogate models for meta-learning
SynchronizationStrategy
Synchronization strategies for parallel optimization
TaskType
Task type for scoring
TransferMethod
Transfer learning methods
TransferStrategy
Transfer learning strategies for hyperparameter optimization
UncertaintyDecompositionMethod
WarmStartStrategy
Warm-start strategy for optimization initialization
WorstCaseScenario
Worst-case scenario types

Traits§

AutoMLProgressCallback
Progress callback for AutoML pipeline
CrossValidator
Trait for cross-validation iterators
CustomMetric
Custom metric trait
CustomScorer
Custom scoring function trait
EarlyStoppingCallback
Early stopping callback trait for use with optimizers
OptimizationHook
Optimization hook trait for callbacks
OptimizationLearner
Trait for optimizers that can learn from experience
OptimizationMiddleware
Middleware for optimization pipelines
OptimizerPlugin
Core trait for optimization plugins
RegressionCrossValidator
Extended trait for regression cross-validation that works with continuous targets

Functions§

analyze_model_complexity
Convenience function for analyzing model complexity
analyze_parameter_sensitivity
Perform sensitivity analysis
automl
Convenience function for quick AutoML
automl_with_budget
Quick AutoML with custom time budget
bayesian_model_average
bias_variance_decompose
Convenience function for performing bias-variance decomposition
compute_shap_importance
Compute SHAP values for hyperparameters
cross_val_predict
Generate cross-validated estimates for each input data point
cross_val_score
Evaluate a score by cross-validation
cross_validate
Evaluate metric(s) by cross-validation and also record fit/score times
cv_select_model
Convenience function for cross-validation model selection
detect_overfitting_learning_curve
Convenience function for detecting overfitting from learning curves
engineer_features
Convenience function for quick feature engineering
evaluate_ensemble
Convenience function for ensemble evaluation
evaluate_incremental_stream
Convenience function for incremental evaluation
friedman_test
Friedman test for comparing multiple models across multiple datasets
hierarchical_cross_validate
imbalanced_cross_validate
learning_curve
Compute learning curves for an estimator
mcnemar_test
McNemar’s test for comparing two binary classifiers
memory_efficient_cross_validate
Convenience function for memory-efficient cross-validation
meta_learning_recommend
Convenience function for meta-learning based hyperparameter initialization
multi_fidelity_optimize
Convenience function for multi-fidelity optimization
multilabel_cross_validate
multiple_model_comparison
Multiple model comparison with correction for multiple testing
nemenyi_post_hoc_test
Nemenyi post-hoc test for pairwise comparisons after Friedman test
nested_cross_validate
Nested cross-validation for unbiased model evaluation with hyperparameter optimization
optimize_threshold
Optimize threshold for a given metric
paired_t_test
Paired t-test for comparing two sets of continuous performance scores
paired_ttest
Perform paired t-test for comparing two sets of CV scores
parallel_optimize
Convenience function for parallel optimization
permutation_test_score
Evaluate the significance of a cross-validated score with permutations
quantify_aleatoric_uncertainty
quantify_epistemic_uncertainty
quantify_uncertainty
robustness_test
select_best_algorithm
Convenience function for quick algorithm selection
select_ensemble
Convenience function for ensemble selection
train_test_split
Split arrays or matrices into random train and test subsets
validate_ood
Convenience function for out-of-distribution validation
validation_curve
Compute validation curves for an estimator
wilcoxon_signed_rank_test
Wilcoxon signed-rank test (non-parametric alternative to paired t-test)
worst_case_validate
Convenience function for worst-case validation

Type Aliases§

ParamConfigFn
Parameter configuration function type
ParameterDistributions
Parameter distribution grid for randomized search
ParameterGrid
Parameter grid for grid search
ParameterSet
A parameter combination for one grid search iteration