1use crate::common::CovarianceType;
8use scirs2_core::ndarray::{Array1, Array2, Array3};
9use sklears_core::{
10 error::{Result as SklResult, SklearsError},
11 traits::{Estimator, Fit, Predict, Untrained},
12};
13
14#[derive(Debug, Clone)]
19pub struct MarkovRandomFieldMixture<S = Untrained> {
20 pub n_components: usize,
22 pub covariance_type: CovarianceType,
24 pub interaction_strength: f64,
26 pub neighborhood_size: usize,
28 pub max_iter: usize,
30 pub tol: f64,
32 pub random_state: Option<u64>,
34 _phantom: std::marker::PhantomData<S>,
35}
36
37#[derive(Debug, Clone)]
39pub struct MarkovRandomFieldMixtureTrained {
40 pub weights: Array1<f64>,
42 pub means: Array2<f64>,
44 pub covariances: Array3<f64>,
46 pub interaction_parameters: Array2<f64>,
48 pub neighborhood_graph: Array2<f64>,
50}
51
52#[derive(Debug, Clone)]
54pub struct MarkovRandomFieldMixtureBuilder {
55 n_components: usize,
56 covariance_type: CovarianceType,
57 interaction_strength: f64,
58 neighborhood_size: usize,
59 max_iter: usize,
60 tol: f64,
61 random_state: Option<u64>,
62}
63
64impl MarkovRandomFieldMixtureBuilder {
65 pub fn new(n_components: usize) -> Self {
67 Self {
68 n_components,
69 covariance_type: CovarianceType::Full,
70 interaction_strength: 1.0,
71 neighborhood_size: 8,
72 max_iter: 100,
73 tol: 1e-4,
74 random_state: None,
75 }
76 }
77
78 pub fn covariance_type(mut self, covariance_type: CovarianceType) -> Self {
80 self.covariance_type = covariance_type;
81 self
82 }
83
84 pub fn interaction_strength(mut self, interaction_strength: f64) -> Self {
86 self.interaction_strength = interaction_strength;
87 self
88 }
89
90 pub fn neighborhood_size(mut self, neighborhood_size: usize) -> Self {
92 self.neighborhood_size = neighborhood_size;
93 self
94 }
95
96 pub fn max_iter(mut self, max_iter: usize) -> Self {
98 self.max_iter = max_iter;
99 self
100 }
101
102 pub fn tolerance(mut self, tol: f64) -> Self {
104 self.tol = tol;
105 self
106 }
107
108 pub fn random_state(mut self, random_state: u64) -> Self {
110 self.random_state = Some(random_state);
111 self
112 }
113
114 pub fn build(self) -> MarkovRandomFieldMixture<Untrained> {
116 MarkovRandomFieldMixture {
117 n_components: self.n_components,
118 covariance_type: self.covariance_type,
119 interaction_strength: self.interaction_strength,
120 neighborhood_size: self.neighborhood_size,
121 max_iter: self.max_iter,
122 tol: self.tol,
123 random_state: self.random_state,
124 _phantom: std::marker::PhantomData,
125 }
126 }
127}
128
129impl Estimator for MarkovRandomFieldMixture<Untrained> {
130 type Config = ();
131 type Error = SklearsError;
132 type Float = f64;
133
134 fn config(&self) -> &Self::Config {
135 &()
136 }
137}
138
139impl Fit<Array2<f64>, ()> for MarkovRandomFieldMixture<Untrained> {
140 type Fitted = MarkovRandomFieldMixture<MarkovRandomFieldMixtureTrained>;
141
142 fn fit(self, X: &Array2<f64>, _y: &()) -> SklResult<Self::Fitted> {
143 let (n_samples, n_features) = X.dim();
144
145 if n_samples < self.n_components {
146 return Err(SklearsError::InvalidInput(
147 "Number of samples must be at least the number of components".to_string(),
148 ));
149 }
150
151 let _weights = Array1::from_elem(self.n_components, 1.0 / self.n_components as f64);
153
154 let _means = self.initialize_means(X)?;
156
157 let mut covariances = Array3::zeros((self.n_components, n_features, n_features));
159 for k in 0..self.n_components {
160 for i in 0..n_features {
161 covariances[[k, i, i]] = 1.0;
162 }
163 }
164
165 let _interaction_parameters: Array2<f64> =
167 Array2::zeros((self.n_components, self.n_components));
168
169 let _neighborhood_graph = self.build_neighborhood_graph(X)?;
171
172 Ok(MarkovRandomFieldMixture {
177 n_components: self.n_components,
178 covariance_type: self.covariance_type,
179 interaction_strength: self.interaction_strength,
180 neighborhood_size: self.neighborhood_size,
181 max_iter: self.max_iter,
182 tol: self.tol,
183 random_state: self.random_state,
184 _phantom: std::marker::PhantomData,
185 })
186 }
187}
188
189impl MarkovRandomFieldMixture<Untrained> {
190 fn initialize_means(&self, X: &Array2<f64>) -> SklResult<Array2<f64>> {
192 let (n_samples, n_features) = X.dim();
193 let mut means = Array2::zeros((self.n_components, n_features));
194
195 for k in 0..self.n_components {
197 let sample_idx = (k * n_samples) / self.n_components;
198 for j in 0..n_features {
199 means[[k, j]] = X[[sample_idx, j]];
200 }
201 }
202
203 Ok(means)
204 }
205
206 fn build_neighborhood_graph(&self, X: &Array2<f64>) -> SklResult<Array2<f64>> {
208 let n_samples = X.nrows();
209 let mut graph = Array2::zeros((n_samples, n_samples));
210
211 for i in 0..n_samples {
213 let mut distances: Vec<(f64, usize)> = Vec::new();
214
215 for j in 0..n_samples {
216 if i != j {
217 let dist = self.compute_distance(&X.row(i).to_owned(), &X.row(j).to_owned());
218 distances.push((dist, j));
219 }
220 }
221
222 distances.sort_by(|a, b| a.0.partial_cmp(&b.0).unwrap());
224
225 let k = self.neighborhood_size.min(n_samples - 1);
226 for (_, neighbor_idx) in distances.iter().take(k) {
227 graph[[i, *neighbor_idx]] = 1.0;
228 }
229 }
230
231 Ok(graph)
232 }
233
234 fn compute_distance(&self, point1: &Array1<f64>, point2: &Array1<f64>) -> f64 {
236 point1
237 .iter()
238 .zip(point2.iter())
239 .map(|(a, b)| (a - b).powi(2))
240 .sum::<f64>()
241 .sqrt()
242 }
243}
244
245impl Predict<Array2<f64>, Array1<usize>>
246 for MarkovRandomFieldMixture<MarkovRandomFieldMixtureTrained>
247{
248 fn predict(&self, X: &Array2<f64>) -> SklResult<Array1<usize>> {
249 let n_samples = X.nrows();
250 let mut predictions = Array1::zeros(n_samples);
251
252 for i in 0..n_samples {
255 predictions[i] = i % self.n_components;
256 }
257
258 Ok(predictions)
259 }
260}
261
262#[derive(Debug, Clone, Copy, PartialEq)]
264pub enum MRFInteractionType {
265 Potts,
267 Ising,
269 Gaussian,
271 Custom,
273}
274
275impl Default for MRFInteractionType {
276 fn default() -> Self {
277 Self::Potts
278 }
279}
280
281#[derive(Debug, Clone)]
283pub struct MRFConfig {
284 pub interaction_type: MRFInteractionType,
286 pub interaction_strength: f64,
288 pub neighborhood_size: usize,
290 pub temperature: f64,
292 pub convergence_threshold: f64,
294 pub max_belief_propagation_iter: usize,
296}
297
298impl Default for MRFConfig {
299 fn default() -> Self {
300 Self {
301 interaction_type: MRFInteractionType::default(),
302 interaction_strength: 1.0,
303 neighborhood_size: 8,
304 temperature: 1.0,
305 convergence_threshold: 1e-6,
306 max_belief_propagation_iter: 50,
307 }
308 }
309}
310
311#[allow(non_snake_case)]
312#[cfg(test)]
313mod tests {
314 use super::*;
315 use scirs2_core::ndarray::array;
316
317 #[test]
318 fn test_markov_random_field_builder() {
319 let mrf = MarkovRandomFieldMixtureBuilder::new(3)
320 .interaction_strength(2.0)
321 .neighborhood_size(6)
322 .max_iter(50)
323 .build();
324
325 assert_eq!(mrf.n_components, 3);
326 assert_eq!(mrf.interaction_strength, 2.0);
327 assert_eq!(mrf.neighborhood_size, 6);
328 assert_eq!(mrf.max_iter, 50);
329 }
330
331 #[test]
332 #[allow(non_snake_case)]
333 fn test_neighborhood_graph_construction() {
334 let mrf = MarkovRandomFieldMixtureBuilder::new(2)
335 .neighborhood_size(2)
336 .build();
337
338 let X = array![[0.0, 0.0], [1.0, 0.0], [2.0, 0.0], [0.0, 1.0]];
339 let graph = mrf.build_neighborhood_graph(&X).unwrap();
340
341 for i in 0..X.nrows() {
343 let neighbor_count = graph.row(i).sum();
344 assert!(neighbor_count <= 2.0);
345 }
346 }
347
348 #[test]
349 #[allow(non_snake_case)]
350 fn test_means_initialization() {
351 let mrf = MarkovRandomFieldMixtureBuilder::new(2).build();
352 let X = array![[0.0, 0.0], [1.0, 1.0], [2.0, 2.0], [3.0, 3.0]];
353
354 let means = mrf.initialize_means(&X).unwrap();
355
356 assert_eq!(means.dim(), (2, 2));
357 assert_eq!(means.row(0), X.row(0));
359 assert_ne!(means.row(1), means.row(0));
361 }
362
363 #[test]
364 fn test_distance_computation() {
365 let mrf = MarkovRandomFieldMixtureBuilder::new(2).build();
366 let point1 = array![0.0, 0.0];
367 let point2 = array![3.0, 4.0];
368
369 let distance = mrf.compute_distance(&point1, &point2);
370 assert!((distance - 5.0).abs() < 1e-10);
371 }
372
373 #[test]
374 fn test_mrf_config_defaults() {
375 let config = MRFConfig::default();
376
377 assert_eq!(config.interaction_type, MRFInteractionType::Potts);
378 assert_eq!(config.interaction_strength, 1.0);
379 assert_eq!(config.neighborhood_size, 8);
380 assert_eq!(config.temperature, 1.0);
381 }
382}