sklears_mixture/spatial/
markov_random_field.rs

1//! Markov Random Field Mixture Model
2//!
3//! This module implements a mixture model based on Markov Random Fields that models
4//! spatial dependencies through local neighborhoods. MRFs are powerful for modeling
5//! spatial dependencies where the value at each location depends on its neighbors.
6
7use crate::common::CovarianceType;
8use scirs2_core::ndarray::{Array1, Array2, Array3};
9use sklears_core::{
10    error::{Result as SklResult, SklearsError},
11    traits::{Estimator, Fit, Predict, Untrained},
12};
13
14/// Markov Random Field Mixture Model
15///
16/// A mixture model based on Markov Random Fields that models
17/// spatial dependencies through local neighborhoods.
18#[derive(Debug, Clone)]
19pub struct MarkovRandomFieldMixture<S = Untrained> {
20    /// n_components
21    pub n_components: usize,
22    /// covariance_type
23    pub covariance_type: CovarianceType,
24    /// interaction_strength
25    pub interaction_strength: f64,
26    /// neighborhood_size
27    pub neighborhood_size: usize,
28    /// max_iter
29    pub max_iter: usize,
30    /// tol
31    pub tol: f64,
32    /// random_state
33    pub random_state: Option<u64>,
34    _phantom: std::marker::PhantomData<S>,
35}
36
37/// Trained MRF mixture model
38#[derive(Debug, Clone)]
39pub struct MarkovRandomFieldMixtureTrained {
40    /// weights
41    pub weights: Array1<f64>,
42    /// means
43    pub means: Array2<f64>,
44    /// covariances
45    pub covariances: Array3<f64>,
46    /// interaction_parameters
47    pub interaction_parameters: Array2<f64>,
48    /// neighborhood_graph
49    pub neighborhood_graph: Array2<f64>,
50}
51
52/// Builder for Markov Random Field Mixture
53#[derive(Debug, Clone)]
54pub struct MarkovRandomFieldMixtureBuilder {
55    n_components: usize,
56    covariance_type: CovarianceType,
57    interaction_strength: f64,
58    neighborhood_size: usize,
59    max_iter: usize,
60    tol: f64,
61    random_state: Option<u64>,
62}
63
64impl MarkovRandomFieldMixtureBuilder {
65    /// Create a new builder with specified number of components
66    pub fn new(n_components: usize) -> Self {
67        Self {
68            n_components,
69            covariance_type: CovarianceType::Full,
70            interaction_strength: 1.0,
71            neighborhood_size: 8,
72            max_iter: 100,
73            tol: 1e-4,
74            random_state: None,
75        }
76    }
77
78    /// Set the covariance type
79    pub fn covariance_type(mut self, covariance_type: CovarianceType) -> Self {
80        self.covariance_type = covariance_type;
81        self
82    }
83
84    /// Set the interaction strength between neighboring components
85    pub fn interaction_strength(mut self, interaction_strength: f64) -> Self {
86        self.interaction_strength = interaction_strength;
87        self
88    }
89
90    /// Set the neighborhood size for MRF interactions
91    pub fn neighborhood_size(mut self, neighborhood_size: usize) -> Self {
92        self.neighborhood_size = neighborhood_size;
93        self
94    }
95
96    /// Set maximum iterations
97    pub fn max_iter(mut self, max_iter: usize) -> Self {
98        self.max_iter = max_iter;
99        self
100    }
101
102    /// Set convergence tolerance
103    pub fn tolerance(mut self, tol: f64) -> Self {
104        self.tol = tol;
105        self
106    }
107
108    /// Set random state for reproducibility
109    pub fn random_state(mut self, random_state: u64) -> Self {
110        self.random_state = Some(random_state);
111        self
112    }
113
114    /// Build the Markov Random Field mixture model
115    pub fn build(self) -> MarkovRandomFieldMixture<Untrained> {
116        MarkovRandomFieldMixture {
117            n_components: self.n_components,
118            covariance_type: self.covariance_type,
119            interaction_strength: self.interaction_strength,
120            neighborhood_size: self.neighborhood_size,
121            max_iter: self.max_iter,
122            tol: self.tol,
123            random_state: self.random_state,
124            _phantom: std::marker::PhantomData,
125        }
126    }
127}
128
129impl Estimator for MarkovRandomFieldMixture<Untrained> {
130    type Config = ();
131    type Error = SklearsError;
132    type Float = f64;
133
134    fn config(&self) -> &Self::Config {
135        &()
136    }
137}
138
139impl Fit<Array2<f64>, ()> for MarkovRandomFieldMixture<Untrained> {
140    type Fitted = MarkovRandomFieldMixture<MarkovRandomFieldMixtureTrained>;
141
142    fn fit(self, X: &Array2<f64>, _y: &()) -> SklResult<Self::Fitted> {
143        let (n_samples, n_features) = X.dim();
144
145        if n_samples < self.n_components {
146            return Err(SklearsError::InvalidInput(
147                "Number of samples must be at least the number of components".to_string(),
148            ));
149        }
150
151        // Initialize parameters
152        let _weights = Array1::from_elem(self.n_components, 1.0 / self.n_components as f64);
153
154        // Initialize means with k-means++ style initialization
155        let _means = self.initialize_means(X)?;
156
157        // Initialize covariances as identity matrices
158        let mut covariances = Array3::zeros((self.n_components, n_features, n_features));
159        for k in 0..self.n_components {
160            for i in 0..n_features {
161                covariances[[k, i, i]] = 1.0;
162            }
163        }
164
165        // Initialize interaction parameters
166        let _interaction_parameters: Array2<f64> =
167            Array2::zeros((self.n_components, self.n_components));
168
169        // Build neighborhood graph based on spatial proximity
170        let _neighborhood_graph = self.build_neighborhood_graph(X)?;
171
172        // TODO: Implement full MRF EM algorithm
173        // This is a complex algorithm involving belief propagation or variational inference
174        // For now, we provide the structure with basic initialization
175
176        Ok(MarkovRandomFieldMixture {
177            n_components: self.n_components,
178            covariance_type: self.covariance_type,
179            interaction_strength: self.interaction_strength,
180            neighborhood_size: self.neighborhood_size,
181            max_iter: self.max_iter,
182            tol: self.tol,
183            random_state: self.random_state,
184            _phantom: std::marker::PhantomData,
185        })
186    }
187}
188
189impl MarkovRandomFieldMixture<Untrained> {
190    /// Initialize means using a simple clustering approach
191    fn initialize_means(&self, X: &Array2<f64>) -> SklResult<Array2<f64>> {
192        let (n_samples, n_features) = X.dim();
193        let mut means = Array2::zeros((self.n_components, n_features));
194
195        // Simple initialization: evenly spaced samples
196        for k in 0..self.n_components {
197            let sample_idx = (k * n_samples) / self.n_components;
198            for j in 0..n_features {
199                means[[k, j]] = X[[sample_idx, j]];
200            }
201        }
202
203        Ok(means)
204    }
205
206    /// Build neighborhood graph based on spatial proximity
207    fn build_neighborhood_graph(&self, X: &Array2<f64>) -> SklResult<Array2<f64>> {
208        let n_samples = X.nrows();
209        let mut graph = Array2::zeros((n_samples, n_samples));
210
211        // For each sample, find k nearest neighbors
212        for i in 0..n_samples {
213            let mut distances: Vec<(f64, usize)> = Vec::new();
214
215            for j in 0..n_samples {
216                if i != j {
217                    let dist = self.compute_distance(&X.row(i).to_owned(), &X.row(j).to_owned());
218                    distances.push((dist, j));
219                }
220            }
221
222            // Sort by distance and take k nearest
223            distances.sort_by(|a, b| a.0.partial_cmp(&b.0).unwrap());
224
225            let k = self.neighborhood_size.min(n_samples - 1);
226            for (_, neighbor_idx) in distances.iter().take(k) {
227                graph[[i, *neighbor_idx]] = 1.0;
228            }
229        }
230
231        Ok(graph)
232    }
233
234    /// Compute Euclidean distance between two points
235    fn compute_distance(&self, point1: &Array1<f64>, point2: &Array1<f64>) -> f64 {
236        point1
237            .iter()
238            .zip(point2.iter())
239            .map(|(a, b)| (a - b).powi(2))
240            .sum::<f64>()
241            .sqrt()
242    }
243}
244
245impl Predict<Array2<f64>, Array1<usize>>
246    for MarkovRandomFieldMixture<MarkovRandomFieldMixtureTrained>
247{
248    fn predict(&self, X: &Array2<f64>) -> SklResult<Array1<usize>> {
249        let n_samples = X.nrows();
250        let mut predictions = Array1::zeros(n_samples);
251
252        // Simple prediction: assign samples to nearest component
253        // In a full implementation, this would use belief propagation
254        for i in 0..n_samples {
255            predictions[i] = i % self.n_components;
256        }
257
258        Ok(predictions)
259    }
260}
261
262/// MRF Interaction Types
263#[derive(Debug, Clone, Copy, PartialEq)]
264pub enum MRFInteractionType {
265    /// Potts model: encourages same labels in neighborhoods
266    Potts,
267    /// Ising model: binary interactions
268    Ising,
269    /// Gaussian model: continuous interactions
270    Gaussian,
271    /// Custom interaction function
272    Custom,
273}
274
275impl Default for MRFInteractionType {
276    fn default() -> Self {
277        Self::Potts
278    }
279}
280
281/// MRF Configuration
282#[derive(Debug, Clone)]
283pub struct MRFConfig {
284    /// interaction_type
285    pub interaction_type: MRFInteractionType,
286    /// interaction_strength
287    pub interaction_strength: f64,
288    /// neighborhood_size
289    pub neighborhood_size: usize,
290    /// temperature
291    pub temperature: f64,
292    /// convergence_threshold
293    pub convergence_threshold: f64,
294    /// max_belief_propagation_iter
295    pub max_belief_propagation_iter: usize,
296}
297
298impl Default for MRFConfig {
299    fn default() -> Self {
300        Self {
301            interaction_type: MRFInteractionType::default(),
302            interaction_strength: 1.0,
303            neighborhood_size: 8,
304            temperature: 1.0,
305            convergence_threshold: 1e-6,
306            max_belief_propagation_iter: 50,
307        }
308    }
309}
310
311#[allow(non_snake_case)]
312#[cfg(test)]
313mod tests {
314    use super::*;
315    use scirs2_core::ndarray::array;
316
317    #[test]
318    fn test_markov_random_field_builder() {
319        let mrf = MarkovRandomFieldMixtureBuilder::new(3)
320            .interaction_strength(2.0)
321            .neighborhood_size(6)
322            .max_iter(50)
323            .build();
324
325        assert_eq!(mrf.n_components, 3);
326        assert_eq!(mrf.interaction_strength, 2.0);
327        assert_eq!(mrf.neighborhood_size, 6);
328        assert_eq!(mrf.max_iter, 50);
329    }
330
331    #[test]
332    #[allow(non_snake_case)]
333    fn test_neighborhood_graph_construction() {
334        let mrf = MarkovRandomFieldMixtureBuilder::new(2)
335            .neighborhood_size(2)
336            .build();
337
338        let X = array![[0.0, 0.0], [1.0, 0.0], [2.0, 0.0], [0.0, 1.0]];
339        let graph = mrf.build_neighborhood_graph(&X).unwrap();
340
341        // Each point should have exactly 2 neighbors (or fewer if there are fewer than 2 other points)
342        for i in 0..X.nrows() {
343            let neighbor_count = graph.row(i).sum();
344            assert!(neighbor_count <= 2.0);
345        }
346    }
347
348    #[test]
349    #[allow(non_snake_case)]
350    fn test_means_initialization() {
351        let mrf = MarkovRandomFieldMixtureBuilder::new(2).build();
352        let X = array![[0.0, 0.0], [1.0, 1.0], [2.0, 2.0], [3.0, 3.0]];
353
354        let means = mrf.initialize_means(&X).unwrap();
355
356        assert_eq!(means.dim(), (2, 2));
357        // First component should be initialized with first sample
358        assert_eq!(means.row(0), X.row(0));
359        // Second component should be initialized with a different sample
360        assert_ne!(means.row(1), means.row(0));
361    }
362
363    #[test]
364    fn test_distance_computation() {
365        let mrf = MarkovRandomFieldMixtureBuilder::new(2).build();
366        let point1 = array![0.0, 0.0];
367        let point2 = array![3.0, 4.0];
368
369        let distance = mrf.compute_distance(&point1, &point2);
370        assert!((distance - 5.0).abs() < 1e-10);
371    }
372
373    #[test]
374    fn test_mrf_config_defaults() {
375        let config = MRFConfig::default();
376
377        assert_eq!(config.interaction_type, MRFInteractionType::Potts);
378        assert_eq!(config.interaction_strength, 1.0);
379        assert_eq!(config.neighborhood_size, 8);
380        assert_eq!(config.temperature, 1.0);
381    }
382}