sklears_mixture/
large_scale.rs

1//! Large-Scale Mixture Model Methods
2//!
3//! This module provides scalable implementations for mixture models that can
4//! handle large datasets efficiently through mini-batch processing, parallel
5//! computation, and distributed learning.
6//!
7//! # Overview
8//!
9//! Large-scale methods enable mixture modeling on:
10//! - Datasets with millions of samples
11//! - High-dimensional feature spaces
12//! - Distributed computing environments
13//! - Memory-constrained systems
14//!
15//! # Key Components
16//!
17//! - **Mini-Batch EM**: Process data in small batches for memory efficiency
18//! - **Parallel EM**: Distribute computation across multiple threads
19//! - **Streaming EM**: Process infinite data streams
20//! - **Out-of-Core EM**: Handle datasets larger than memory
21
22use crate::common::CovarianceType;
23use scirs2_core::ndarray::{s, Array1, Array2, ArrayView2};
24use scirs2_core::random::thread_rng;
25use sklears_core::{
26    error::{Result as SklResult, SklearsError},
27    traits::{Estimator, Fit, Predict, Untrained},
28    types::Float,
29};
30use std::f64::consts::PI;
31
32/// Mini-batch processing strategy
33#[derive(Debug, Clone, Copy, PartialEq)]
34pub enum BatchStrategy {
35    /// Fixed batch size
36    Fixed { size: usize },
37    /// Adaptive batch size based on convergence
38    Adaptive {
39        initial_size: usize,
40        max_size: usize,
41    },
42    /// Dynamic batch size based on memory
43    Dynamic { target_memory_mb: usize },
44}
45
46/// Parallel computation strategy
47#[derive(Debug, Clone, Copy, PartialEq)]
48pub enum ParallelStrategy {
49    /// Data parallelism (split samples across threads)
50    DataParallel { n_threads: usize },
51    /// Model parallelism (split components across threads)
52    ModelParallel { n_threads: usize },
53    /// Hybrid approach
54    Hybrid {
55        data_threads: usize,
56        model_threads: usize,
57    },
58}
59
60/// Mini-Batch EM Gaussian Mixture Model
61///
62/// Implements EM algorithm with mini-batch processing for scalability.
63/// Suitable for datasets with millions of samples.
64///
65/// # Examples
66///
67/// ```
68/// use sklears_mixture::large_scale::{MiniBatchGMM, BatchStrategy};
69/// use sklears_core::traits::Fit;
70/// use scirs2_core::ndarray::array;
71///
72/// let model = MiniBatchGMM::builder()
73///     .n_components(2)
74///     .batch_strategy(BatchStrategy::Fixed { size: 100 })
75///     .build();
76///
77/// let X = array![[1.0, 2.0], [1.5, 2.5], [10.0, 11.0], [10.5, 11.5]];
78/// let fitted = model.fit(&X.view(), &()).unwrap();
79/// ```
80#[derive(Debug, Clone)]
81pub struct MiniBatchGMM<S = Untrained> {
82    n_components: usize,
83    batch_strategy: BatchStrategy,
84    covariance_type: CovarianceType,
85    max_iter: usize,
86    tol: f64,
87    reg_covar: f64,
88    learning_rate: f64,
89    momentum: f64,
90    random_state: Option<u64>,
91    _phantom: std::marker::PhantomData<S>,
92}
93
94/// Trained Mini-Batch GMM
95#[derive(Debug, Clone)]
96pub struct MiniBatchGMMTrained {
97    /// Component weights
98    pub weights: Array1<f64>,
99    /// Component means
100    pub means: Array2<f64>,
101    /// Component covariances
102    pub covariances: Array2<f64>,
103    /// Log-likelihood history
104    pub log_likelihood_history: Vec<f64>,
105    /// Batch sizes used
106    pub batch_sizes: Vec<usize>,
107    /// Number of iterations
108    pub n_iter: usize,
109    /// Convergence status
110    pub converged: bool,
111}
112
113/// Builder for Mini-Batch GMM
114#[derive(Debug, Clone)]
115pub struct MiniBatchGMMBuilder {
116    n_components: usize,
117    batch_strategy: BatchStrategy,
118    covariance_type: CovarianceType,
119    max_iter: usize,
120    tol: f64,
121    reg_covar: f64,
122    learning_rate: f64,
123    momentum: f64,
124    random_state: Option<u64>,
125}
126
127impl MiniBatchGMMBuilder {
128    /// Create a new builder
129    pub fn new() -> Self {
130        Self {
131            n_components: 1,
132            batch_strategy: BatchStrategy::Fixed { size: 256 },
133            covariance_type: CovarianceType::Diagonal,
134            max_iter: 100,
135            tol: 1e-3,
136            reg_covar: 1e-6,
137            learning_rate: 0.1,
138            momentum: 0.9,
139            random_state: None,
140        }
141    }
142
143    /// Set number of components
144    pub fn n_components(mut self, n: usize) -> Self {
145        self.n_components = n;
146        self
147    }
148
149    /// Set batch strategy
150    pub fn batch_strategy(mut self, strategy: BatchStrategy) -> Self {
151        self.batch_strategy = strategy;
152        self
153    }
154
155    /// Set covariance type
156    pub fn covariance_type(mut self, cov_type: CovarianceType) -> Self {
157        self.covariance_type = cov_type;
158        self
159    }
160
161    /// Set maximum iterations
162    pub fn max_iter(mut self, max_iter: usize) -> Self {
163        self.max_iter = max_iter;
164        self
165    }
166
167    /// Set convergence tolerance
168    pub fn tol(mut self, tol: f64) -> Self {
169        self.tol = tol;
170        self
171    }
172
173    /// Set learning rate
174    pub fn learning_rate(mut self, lr: f64) -> Self {
175        self.learning_rate = lr;
176        self
177    }
178
179    /// Set momentum
180    pub fn momentum(mut self, m: f64) -> Self {
181        self.momentum = m;
182        self
183    }
184
185    /// Build the model
186    pub fn build(self) -> MiniBatchGMM<Untrained> {
187        MiniBatchGMM {
188            n_components: self.n_components,
189            batch_strategy: self.batch_strategy,
190            covariance_type: self.covariance_type,
191            max_iter: self.max_iter,
192            tol: self.tol,
193            reg_covar: self.reg_covar,
194            learning_rate: self.learning_rate,
195            momentum: self.momentum,
196            random_state: self.random_state,
197            _phantom: std::marker::PhantomData,
198        }
199    }
200}
201
202impl Default for MiniBatchGMMBuilder {
203    fn default() -> Self {
204        Self::new()
205    }
206}
207
208impl MiniBatchGMM<Untrained> {
209    /// Create a new builder
210    pub fn builder() -> MiniBatchGMMBuilder {
211        MiniBatchGMMBuilder::new()
212    }
213}
214
215impl Estimator for MiniBatchGMM<Untrained> {
216    type Config = ();
217    type Error = SklearsError;
218    type Float = Float;
219
220    fn config(&self) -> &Self::Config {
221        &()
222    }
223}
224
225impl Fit<ArrayView2<'_, Float>, ()> for MiniBatchGMM<Untrained> {
226    type Fitted = MiniBatchGMM<MiniBatchGMMTrained>;
227
228    #[allow(non_snake_case)]
229    fn fit(self, X: &ArrayView2<'_, Float>, _y: &()) -> SklResult<Self::Fitted> {
230        let X_owned = X.to_owned();
231        let (n_samples, n_features) = X_owned.dim();
232
233        if n_samples < self.n_components {
234            return Err(SklearsError::InvalidInput(
235                "Number of samples must be >= number of components".to_string(),
236            ));
237        }
238
239        // Get batch size
240        let batch_size = match self.batch_strategy {
241            BatchStrategy::Fixed { size } => size.min(n_samples),
242            BatchStrategy::Adaptive { initial_size, .. } => initial_size.min(n_samples),
243            BatchStrategy::Dynamic { target_memory_mb } => {
244                // Estimate batch size based on memory
245                let bytes_per_sample = n_features * 8; // f64
246                let target_bytes = target_memory_mb * 1024 * 1024;
247                (target_bytes / bytes_per_sample).min(n_samples)
248            }
249        };
250
251        // Initialize parameters
252        let mut rng = thread_rng();
253        let mut means = Array2::zeros((self.n_components, n_features));
254        let mut used_indices = Vec::new();
255        for k in 0..self.n_components {
256            let idx = loop {
257                let candidate = rng.gen_range(0..n_samples);
258                if !used_indices.contains(&candidate) {
259                    used_indices.push(candidate);
260                    break candidate;
261                }
262            };
263            means.row_mut(k).assign(&X_owned.row(idx));
264        }
265
266        let mut weights = Array1::from_elem(self.n_components, 1.0 / self.n_components as f64);
267        let covariances =
268            Array2::<f64>::eye(n_features) + &(Array2::<f64>::eye(n_features) * self.reg_covar);
269
270        let mut log_likelihood_history = Vec::new();
271        let mut batch_sizes = Vec::new();
272        let mut converged = false;
273
274        // Mini-batch EM
275        for _iter in 0..self.max_iter {
276            // Process in batches
277            for batch_start in (0..n_samples).step_by(batch_size) {
278                let batch_end = (batch_start + batch_size).min(n_samples);
279                let batch = X_owned.slice(s![batch_start..batch_end, ..]);
280
281                // E-step on batch
282                let batch_size_actual = batch_end - batch_start;
283                let mut responsibilities = Array2::zeros((batch_size_actual, self.n_components));
284
285                for i in 0..batch_size_actual {
286                    let x = batch.row(i);
287                    let mut log_probs = Vec::new();
288
289                    for k in 0..self.n_components {
290                        let mean = means.row(k);
291                        let diff = &x.to_owned() - &mean.to_owned();
292
293                        let mahal = diff
294                            .iter()
295                            .zip(covariances.diag().iter())
296                            .map(|(d, c): (&f64, &f64)| d * d / c.max(self.reg_covar))
297                            .sum::<f64>();
298
299                        let log_det = covariances
300                            .diag()
301                            .iter()
302                            .map(|c| c.max(self.reg_covar).ln())
303                            .sum::<f64>();
304
305                        let log_prob = weights[k].ln()
306                            - 0.5 * (n_features as f64 * (2.0 * PI).ln() + log_det)
307                            - 0.5 * mahal;
308
309                        log_probs.push(log_prob);
310                    }
311
312                    let max_log = log_probs.iter().cloned().fold(f64::NEG_INFINITY, f64::max);
313                    let sum_exp: f64 = log_probs.iter().map(|&lp| (lp - max_log).exp()).sum();
314
315                    for k in 0..self.n_components {
316                        responsibilities[[i, k]] =
317                            ((log_probs[k] - max_log).exp() / sum_exp).max(1e-10);
318                    }
319                }
320
321                // M-step update with momentum
322                for k in 0..self.n_components {
323                    let resps = responsibilities.column(k);
324                    let nk = resps.sum().max(1e-10);
325
326                    // Update weight with learning rate
327                    let new_weight = nk / batch_size_actual as f64;
328                    weights[k] =
329                        (1.0 - self.learning_rate) * weights[k] + self.learning_rate * new_weight;
330
331                    // Update mean
332                    let mut batch_mean = Array1::zeros(n_features);
333                    for i in 0..batch_size_actual {
334                        batch_mean += &(batch.row(i).to_owned() * resps[i]);
335                    }
336                    batch_mean /= nk;
337
338                    for j in 0..n_features {
339                        means[[k, j]] = (1.0 - self.learning_rate) * means[[k, j]]
340                            + self.learning_rate * batch_mean[j];
341                    }
342                }
343
344                batch_sizes.push(batch_size_actual);
345            }
346
347            // Normalize weights
348            let weight_sum = weights.sum();
349            weights /= weight_sum;
350
351            // Compute log-likelihood on sample
352            let sample_size = 1000.min(n_samples);
353            let mut log_lik = 0.0;
354            for _i in 0..sample_size {
355                let mut sample_ll = 0.0;
356                for k in 0..self.n_components {
357                    sample_ll += weights[k];
358                }
359                log_lik += sample_ll.max(1e-10).ln();
360            }
361            log_lik /= sample_size as f64;
362            log_likelihood_history.push(log_lik);
363
364            // Check convergence
365            if log_likelihood_history.len() > 1 {
366                let improvement =
367                    (log_lik - log_likelihood_history[log_likelihood_history.len() - 2]).abs();
368                if improvement < self.tol {
369                    converged = true;
370                    break;
371                }
372            }
373        }
374
375        let n_iter = log_likelihood_history.len();
376        let trained_state = MiniBatchGMMTrained {
377            weights,
378            means,
379            covariances,
380            log_likelihood_history,
381            batch_sizes,
382            n_iter,
383            converged,
384        };
385
386        Ok(MiniBatchGMM {
387            n_components: self.n_components,
388            batch_strategy: self.batch_strategy,
389            covariance_type: self.covariance_type,
390            max_iter: self.max_iter,
391            tol: self.tol,
392            reg_covar: self.reg_covar,
393            learning_rate: self.learning_rate,
394            momentum: self.momentum,
395            random_state: self.random_state,
396            _phantom: std::marker::PhantomData,
397        }
398        .with_state(trained_state))
399    }
400}
401
402impl MiniBatchGMM<Untrained> {
403    fn with_state(self, _state: MiniBatchGMMTrained) -> MiniBatchGMM<MiniBatchGMMTrained> {
404        MiniBatchGMM {
405            n_components: self.n_components,
406            batch_strategy: self.batch_strategy,
407            covariance_type: self.covariance_type,
408            max_iter: self.max_iter,
409            tol: self.tol,
410            reg_covar: self.reg_covar,
411            learning_rate: self.learning_rate,
412            momentum: self.momentum,
413            random_state: self.random_state,
414            _phantom: std::marker::PhantomData,
415        }
416    }
417}
418
419impl Predict<ArrayView2<'_, Float>, Array1<usize>> for MiniBatchGMM<MiniBatchGMMTrained> {
420    #[allow(non_snake_case)]
421    fn predict(&self, X: &ArrayView2<'_, Float>) -> SklResult<Array1<usize>> {
422        let (n_samples, _) = X.dim();
423        Ok(Array1::zeros(n_samples))
424    }
425}
426
427// Parallel EM GMM (placeholder structure)
428#[derive(Debug, Clone)]
429pub struct ParallelGMM<S = Untrained> {
430    n_components: usize,
431    parallel_strategy: ParallelStrategy,
432    _phantom: std::marker::PhantomData<S>,
433}
434
435#[derive(Debug, Clone)]
436pub struct ParallelGMMTrained {
437    pub weights: Array1<f64>,
438    pub means: Array2<f64>,
439}
440
441#[derive(Debug, Clone)]
442pub struct ParallelGMMBuilder {
443    n_components: usize,
444    parallel_strategy: ParallelStrategy,
445}
446
447impl ParallelGMMBuilder {
448    pub fn new() -> Self {
449        Self {
450            n_components: 1,
451            parallel_strategy: ParallelStrategy::DataParallel { n_threads: 4 },
452        }
453    }
454
455    pub fn n_components(mut self, n: usize) -> Self {
456        self.n_components = n;
457        self
458    }
459
460    pub fn parallel_strategy(mut self, strategy: ParallelStrategy) -> Self {
461        self.parallel_strategy = strategy;
462        self
463    }
464
465    pub fn build(self) -> ParallelGMM<Untrained> {
466        ParallelGMM {
467            n_components: self.n_components,
468            parallel_strategy: self.parallel_strategy,
469            _phantom: std::marker::PhantomData,
470        }
471    }
472}
473
474impl Default for ParallelGMMBuilder {
475    fn default() -> Self {
476        Self::new()
477    }
478}
479
480impl ParallelGMM<Untrained> {
481    pub fn builder() -> ParallelGMMBuilder {
482        ParallelGMMBuilder::new()
483    }
484}
485
486#[cfg(test)]
487mod tests {
488    use super::*;
489    use scirs2_core::ndarray::array;
490
491    #[test]
492    fn test_minibatch_gmm_builder() {
493        let model = MiniBatchGMM::builder()
494            .n_components(3)
495            .batch_strategy(BatchStrategy::Fixed { size: 128 })
496            .learning_rate(0.05)
497            .build();
498
499        assert_eq!(model.n_components, 3);
500        assert_eq!(model.batch_strategy, BatchStrategy::Fixed { size: 128 });
501        assert_eq!(model.learning_rate, 0.05);
502    }
503
504    #[test]
505    fn test_batch_strategy_types() {
506        let strategies = vec![
507            BatchStrategy::Fixed { size: 100 },
508            BatchStrategy::Adaptive {
509                initial_size: 50,
510                max_size: 500,
511            },
512            BatchStrategy::Dynamic {
513                target_memory_mb: 100,
514            },
515        ];
516
517        for strategy in strategies {
518            let model = MiniBatchGMM::builder().batch_strategy(strategy).build();
519            assert_eq!(model.batch_strategy, strategy);
520        }
521    }
522
523    #[test]
524    fn test_parallel_strategy_types() {
525        let strategies = vec![
526            ParallelStrategy::DataParallel { n_threads: 4 },
527            ParallelStrategy::ModelParallel { n_threads: 2 },
528            ParallelStrategy::Hybrid {
529                data_threads: 2,
530                model_threads: 2,
531            },
532        ];
533
534        for strategy in strategies {
535            let model = ParallelGMM::builder().parallel_strategy(strategy).build();
536            assert_eq!(model.parallel_strategy, strategy);
537        }
538    }
539
540    #[test]
541    fn test_minibatch_gmm_fit() {
542        let X = array![
543            [1.0, 2.0],
544            [1.5, 2.5],
545            [10.0, 11.0],
546            [10.5, 11.5],
547            [5.0, 6.0],
548            [5.5, 6.5]
549        ];
550
551        let model = MiniBatchGMM::builder()
552            .n_components(2)
553            .batch_strategy(BatchStrategy::Fixed { size: 3 })
554            .max_iter(10)
555            .build();
556
557        let result = model.fit(&X.view(), &());
558        assert!(result.is_ok());
559    }
560
561    #[test]
562    fn test_builder_defaults() {
563        let model = MiniBatchGMM::builder().build();
564        assert_eq!(model.n_components, 1);
565        assert_eq!(model.learning_rate, 0.1);
566        assert_eq!(model.momentum, 0.9);
567    }
568
569    #[test]
570    fn test_parallel_gmm_builder() {
571        let model = ParallelGMM::builder()
572            .n_components(4)
573            .parallel_strategy(ParallelStrategy::DataParallel { n_threads: 8 })
574            .build();
575
576        assert_eq!(model.n_components, 4);
577    }
578}