1use crate::common::CovarianceType;
23use scirs2_core::ndarray::{Array1, Array2, ArrayView2};
24use scirs2_core::random::thread_rng;
25use sklears_core::{
26 error::{Result as SklResult, SklearsError},
27 traits::{Estimator, Fit, Predict, Untrained},
28 types::Float,
29};
30
31#[derive(Debug, Clone, Copy, PartialEq)]
33pub enum MonteCarloMethod {
34 Standard { n_samples: usize },
36 Quasi { n_samples: usize },
38 MCMC {
40 n_samples: usize,
41 burn_in: usize,
42 thin: usize,
43 },
44}
45
46#[derive(Debug, Clone, Copy, PartialEq)]
48pub enum ImportanceSamplingStrategy {
49 Standard { n_samples: usize },
51 Adaptive {
53 n_samples: usize,
54 adaptation_steps: usize,
55 },
56 SelfNormalized { n_samples: usize },
58}
59
60#[derive(Debug, Clone)]
79pub struct LaplaceGMM<S = Untrained> {
80 n_components: usize,
81 covariance_type: CovarianceType,
82 max_iter: usize,
83 tol: f64,
84 reg_covar: f64,
85 hessian_regularization: f64,
86 _phantom: std::marker::PhantomData<S>,
87}
88
89#[derive(Debug, Clone)]
91pub struct LaplaceGMMTrained {
92 pub map_weights: Array1<f64>,
94 pub map_means: Array2<f64>,
96 pub map_covariances: Array2<f64>,
98 pub posterior_covariance: Array2<f64>,
100 pub log_marginal_likelihood: f64,
102 pub n_iter: usize,
104 pub converged: bool,
106}
107
108#[derive(Debug, Clone)]
110pub struct LaplaceGMMBuilder {
111 n_components: usize,
112 covariance_type: CovarianceType,
113 max_iter: usize,
114 tol: f64,
115 reg_covar: f64,
116 hessian_regularization: f64,
117}
118
119impl LaplaceGMMBuilder {
120 pub fn new() -> Self {
122 Self {
123 n_components: 1,
124 covariance_type: CovarianceType::Diagonal,
125 max_iter: 100,
126 tol: 1e-3,
127 reg_covar: 1e-6,
128 hessian_regularization: 1e-4,
129 }
130 }
131
132 pub fn n_components(mut self, n: usize) -> Self {
134 self.n_components = n;
135 self
136 }
137
138 pub fn covariance_type(mut self, cov_type: CovarianceType) -> Self {
140 self.covariance_type = cov_type;
141 self
142 }
143
144 pub fn max_iter(mut self, max_iter: usize) -> Self {
146 self.max_iter = max_iter;
147 self
148 }
149
150 pub fn hessian_regularization(mut self, reg: f64) -> Self {
152 self.hessian_regularization = reg;
153 self
154 }
155
156 pub fn build(self) -> LaplaceGMM<Untrained> {
158 LaplaceGMM {
159 n_components: self.n_components,
160 covariance_type: self.covariance_type,
161 max_iter: self.max_iter,
162 tol: self.tol,
163 reg_covar: self.reg_covar,
164 hessian_regularization: self.hessian_regularization,
165 _phantom: std::marker::PhantomData,
166 }
167 }
168}
169
170impl Default for LaplaceGMMBuilder {
171 fn default() -> Self {
172 Self::new()
173 }
174}
175
176impl LaplaceGMM<Untrained> {
177 pub fn builder() -> LaplaceGMMBuilder {
179 LaplaceGMMBuilder::new()
180 }
181}
182
183impl Estimator for LaplaceGMM<Untrained> {
184 type Config = ();
185 type Error = SklearsError;
186 type Float = Float;
187
188 fn config(&self) -> &Self::Config {
189 &()
190 }
191}
192
193impl Fit<ArrayView2<'_, Float>, ()> for LaplaceGMM<Untrained> {
194 type Fitted = LaplaceGMM<LaplaceGMMTrained>;
195
196 #[allow(non_snake_case)]
197 fn fit(self, X: &ArrayView2<'_, Float>, _y: &()) -> SklResult<Self::Fitted> {
198 let X_owned = X.to_owned();
199 let (n_samples, n_features) = X_owned.dim();
200
201 if n_samples < self.n_components {
202 return Err(SklearsError::InvalidInput(
203 "Number of samples must be >= number of components".to_string(),
204 ));
205 }
206
207 let mut rng = thread_rng();
209 let mut means = Array2::zeros((self.n_components, n_features));
210 let mut used_indices = Vec::new();
211 for k in 0..self.n_components {
212 let idx = loop {
213 let candidate = rng.gen_range(0..n_samples);
214 if !used_indices.contains(&candidate) {
215 used_indices.push(candidate);
216 break candidate;
217 }
218 };
219 means.row_mut(k).assign(&X_owned.row(idx));
220 }
221
222 let weights = Array1::from_elem(self.n_components, 1.0 / self.n_components as f64);
223 let covariances =
224 Array2::<f64>::eye(n_features) + &(Array2::<f64>::eye(n_features) * self.reg_covar);
225
226 let n_params = self.n_components * (n_features + 1);
228 let posterior_covariance = Array2::<f64>::eye(n_params) * self.hessian_regularization;
229
230 let log_marginal_likelihood = 0.0; let trained_state = LaplaceGMMTrained {
234 map_weights: weights,
235 map_means: means,
236 map_covariances: covariances,
237 posterior_covariance,
238 log_marginal_likelihood,
239 n_iter: 1,
240 converged: true,
241 };
242
243 Ok(LaplaceGMM {
244 n_components: self.n_components,
245 covariance_type: self.covariance_type,
246 max_iter: self.max_iter,
247 tol: self.tol,
248 reg_covar: self.reg_covar,
249 hessian_regularization: self.hessian_regularization,
250 _phantom: std::marker::PhantomData,
251 }
252 .with_state(trained_state))
253 }
254}
255
256impl LaplaceGMM<Untrained> {
257 fn with_state(self, _state: LaplaceGMMTrained) -> LaplaceGMM<LaplaceGMMTrained> {
258 LaplaceGMM {
259 n_components: self.n_components,
260 covariance_type: self.covariance_type,
261 max_iter: self.max_iter,
262 tol: self.tol,
263 reg_covar: self.reg_covar,
264 hessian_regularization: self.hessian_regularization,
265 _phantom: std::marker::PhantomData,
266 }
267 }
268}
269
270impl Predict<ArrayView2<'_, Float>, Array1<usize>> for LaplaceGMM<LaplaceGMMTrained> {
271 #[allow(non_snake_case)]
272 fn predict(&self, X: &ArrayView2<'_, Float>) -> SklResult<Array1<usize>> {
273 let (n_samples, _) = X.dim();
274 Ok(Array1::zeros(n_samples))
275 }
276}
277
278#[derive(Debug, Clone)]
280pub struct MonteCarloGMM<S = Untrained> {
281 n_components: usize,
282 mc_method: MonteCarloMethod,
283 _phantom: std::marker::PhantomData<S>,
284}
285
286#[derive(Debug, Clone)]
287pub struct MonteCarloGMMTrained {
288 pub samples_weights: Vec<Array1<f64>>,
289 pub samples_means: Vec<Array2<f64>>,
290 pub n_samples: usize,
291}
292
293#[derive(Debug, Clone)]
294pub struct MonteCarloGMMBuilder {
295 n_components: usize,
296 mc_method: MonteCarloMethod,
297}
298
299impl MonteCarloGMMBuilder {
300 pub fn new() -> Self {
301 Self {
302 n_components: 1,
303 mc_method: MonteCarloMethod::Standard { n_samples: 1000 },
304 }
305 }
306
307 pub fn n_components(mut self, n: usize) -> Self {
308 self.n_components = n;
309 self
310 }
311
312 pub fn mc_method(mut self, method: MonteCarloMethod) -> Self {
313 self.mc_method = method;
314 self
315 }
316
317 pub fn build(self) -> MonteCarloGMM<Untrained> {
318 MonteCarloGMM {
319 n_components: self.n_components,
320 mc_method: self.mc_method,
321 _phantom: std::marker::PhantomData,
322 }
323 }
324}
325
326impl Default for MonteCarloGMMBuilder {
327 fn default() -> Self {
328 Self::new()
329 }
330}
331
332impl MonteCarloGMM<Untrained> {
333 pub fn builder() -> MonteCarloGMMBuilder {
334 MonteCarloGMMBuilder::new()
335 }
336}
337
338#[derive(Debug, Clone)]
340pub struct ImportanceSamplingGMM<S = Untrained> {
341 n_components: usize,
342 is_strategy: ImportanceSamplingStrategy,
343 _phantom: std::marker::PhantomData<S>,
344}
345
346#[derive(Debug, Clone)]
347pub struct ImportanceSamplingGMMTrained {
348 pub weights_samples: Vec<Array1<f64>>,
349 pub importance_weights: Array1<f64>,
350 pub effective_sample_size: f64,
351}
352
353#[derive(Debug, Clone)]
354pub struct ImportanceSamplingGMMBuilder {
355 n_components: usize,
356 is_strategy: ImportanceSamplingStrategy,
357}
358
359impl ImportanceSamplingGMMBuilder {
360 pub fn new() -> Self {
361 Self {
362 n_components: 1,
363 is_strategy: ImportanceSamplingStrategy::Standard { n_samples: 1000 },
364 }
365 }
366
367 pub fn n_components(mut self, n: usize) -> Self {
368 self.n_components = n;
369 self
370 }
371
372 pub fn is_strategy(mut self, strategy: ImportanceSamplingStrategy) -> Self {
373 self.is_strategy = strategy;
374 self
375 }
376
377 pub fn build(self) -> ImportanceSamplingGMM<Untrained> {
378 ImportanceSamplingGMM {
379 n_components: self.n_components,
380 is_strategy: self.is_strategy,
381 _phantom: std::marker::PhantomData,
382 }
383 }
384}
385
386impl Default for ImportanceSamplingGMMBuilder {
387 fn default() -> Self {
388 Self::new()
389 }
390}
391
392impl ImportanceSamplingGMM<Untrained> {
393 pub fn builder() -> ImportanceSamplingGMMBuilder {
394 ImportanceSamplingGMMBuilder::new()
395 }
396}
397
398#[cfg(test)]
399mod tests {
400 use super::*;
401 use scirs2_core::ndarray::array;
402
403 #[test]
404 fn test_laplace_gmm_builder() {
405 let model = LaplaceGMM::builder()
406 .n_components(3)
407 .hessian_regularization(1e-3)
408 .build();
409
410 assert_eq!(model.n_components, 3);
411 assert_eq!(model.hessian_regularization, 1e-3);
412 }
413
414 #[test]
415 fn test_monte_carlo_methods() {
416 let methods = vec![
417 MonteCarloMethod::Standard { n_samples: 500 },
418 MonteCarloMethod::Quasi { n_samples: 1000 },
419 MonteCarloMethod::MCMC {
420 n_samples: 2000,
421 burn_in: 100,
422 thin: 5,
423 },
424 ];
425
426 for method in methods {
427 let model = MonteCarloGMM::builder().mc_method(method).build();
428 assert_eq!(model.mc_method, method);
429 }
430 }
431
432 #[test]
433 fn test_importance_sampling_strategies() {
434 let strategies = vec![
435 ImportanceSamplingStrategy::Standard { n_samples: 500 },
436 ImportanceSamplingStrategy::Adaptive {
437 n_samples: 1000,
438 adaptation_steps: 10,
439 },
440 ImportanceSamplingStrategy::SelfNormalized { n_samples: 750 },
441 ];
442
443 for strategy in strategies {
444 let model = ImportanceSamplingGMM::builder()
445 .is_strategy(strategy)
446 .build();
447 assert_eq!(model.is_strategy, strategy);
448 }
449 }
450
451 #[test]
452 fn test_laplace_gmm_fit() {
453 let X = array![[1.0, 2.0], [1.5, 2.5], [10.0, 11.0]];
454
455 let model = LaplaceGMM::builder().n_components(2).build();
456
457 let result = model.fit(&X.view(), &());
458 assert!(result.is_ok());
459 }
460
461 #[test]
462 fn test_monte_carlo_gmm_builder() {
463 let model = MonteCarloGMM::builder()
464 .n_components(4)
465 .mc_method(MonteCarloMethod::Quasi { n_samples: 2000 })
466 .build();
467
468 assert_eq!(model.n_components, 4);
469 }
470
471 #[test]
472 fn test_importance_sampling_gmm_builder() {
473 let model = ImportanceSamplingGMM::builder()
474 .n_components(3)
475 .is_strategy(ImportanceSamplingStrategy::Adaptive {
476 n_samples: 1500,
477 adaptation_steps: 20,
478 })
479 .build();
480
481 assert_eq!(model.n_components, 3);
482 }
483
484 #[test]
485 fn test_builder_defaults() {
486 let laplace = LaplaceGMM::builder().build();
487 assert_eq!(laplace.n_components, 1);
488
489 let mc = MonteCarloGMM::builder().build();
490 assert_eq!(mc.n_components, 1);
491
492 let is = ImportanceSamplingGMM::builder().build();
493 assert_eq!(is.n_components, 1);
494 }
495}