1use scirs2_core::ndarray::{s, Array1, Array2};
8use scirs2_core::random::seq::SliceRandom;
9use scirs2_core::random::{Distribution, RandNormal as Normal, Rng};
10use scirs2_core::{SeedableRng, StdRng};
11use sklears_core::{
12 error::{Result, SklearsError},
13 traits::{Estimator, Fit, Predict, Trained, Untrained},
14 types::Float,
15};
16use std::marker::PhantomData;
17
18#[derive(Debug, Clone)]
20pub struct LargeScaleVariationalConfig {
21 pub max_epochs: usize,
23 pub batch_size: usize,
25 pub learning_rate: Float,
27 pub learning_rate_decay: LearningRateDecay,
29 pub tolerance: Float,
31 pub n_mc_samples: usize,
33 pub use_natural_gradients: bool,
35 pub use_control_variates: bool,
37 pub memory_limit_gb: Option<Float>,
39 pub verbose: bool,
41 pub random_seed: Option<u64>,
43 pub prior_config: PriorConfiguration,
45}
46
47impl Default for LargeScaleVariationalConfig {
48 fn default() -> Self {
49 Self {
50 max_epochs: 100,
51 batch_size: 256,
52 learning_rate: 0.01,
53 learning_rate_decay: LearningRateDecay::Exponential { decay_rate: 0.95 },
54 tolerance: 1e-6,
55 n_mc_samples: 10,
56 use_natural_gradients: true,
57 use_control_variates: true,
58 memory_limit_gb: Some(4.0),
59 verbose: false,
60 random_seed: None,
61 prior_config: PriorConfiguration::default(),
62 }
63 }
64}
65
66#[derive(Debug, Clone)]
68pub enum LearningRateDecay {
69 Constant,
71 Exponential { decay_rate: Float },
73 Step {
75 step_size: usize,
76 step_factor: Float,
77 },
78 Polynomial { decay_rate: Float, power: Float },
80 CosineAnnealing { min_lr: Float },
82}
83
84#[derive(Debug, Clone)]
86pub struct PriorConfiguration {
87 pub weight_precision_shape: Float,
89 pub weight_precision_rate: Float,
90 pub noise_precision_shape: Float,
92 pub noise_precision_rate: Float,
93 pub hierarchical: bool,
95 pub ard_config: Option<ARDConfiguration>,
97}
98
99impl Default for PriorConfiguration {
100 fn default() -> Self {
101 Self {
102 weight_precision_shape: 1e-6,
103 weight_precision_rate: 1e-6,
104 noise_precision_shape: 1e-6,
105 noise_precision_rate: 1e-6,
106 hierarchical: false,
107 ard_config: None,
108 }
109 }
110}
111
112#[derive(Debug, Clone)]
114pub struct ARDConfiguration {
115 pub feature_precision_shape: Float,
117 pub feature_precision_rate: Float,
118 pub pruning_threshold: Float,
120 pub enable_pruning: bool,
122}
123
124#[derive(Debug, Clone)]
126pub struct VariationalPosterior {
127 pub weight_mean: Array1<Float>,
129 pub weight_covariance: Array2<Float>,
131 pub weight_precision: Array2<Float>,
133 pub weight_precision_shape: Array1<Float>,
135 pub weight_precision_rate: Array1<Float>,
136 pub noise_precision_shape: Float,
138 pub noise_precision_rate: Float,
139 pub elbo: Float,
141}
142
143impl VariationalPosterior {
144 pub fn new(n_features: usize, config: &PriorConfiguration) -> Self {
146 Self {
147 weight_mean: Array1::zeros(n_features),
148 weight_covariance: Array2::eye(n_features),
149 weight_precision: Array2::eye(n_features),
150 weight_precision_shape: Array1::from_elem(n_features, config.weight_precision_shape),
151 weight_precision_rate: Array1::from_elem(n_features, config.weight_precision_rate),
152 noise_precision_shape: config.noise_precision_shape,
153 noise_precision_rate: config.noise_precision_rate,
154 elbo: Float::NEG_INFINITY,
155 }
156 }
157
158 pub fn sample_weights(&self, n_samples: usize, rng: &mut impl Rng) -> Result<Array2<Float>> {
160 let n_features = self.weight_mean.len();
161 let mut samples = Array2::zeros((n_samples, n_features));
162
163 let chol = self.cholesky_decomposition(&self.weight_covariance)?;
165
166 for i in 0..n_samples {
167 let z: Array1<Float> = (0..n_features)
169 .map(|_| Normal::new(0.0, 1.0).unwrap().sample(rng))
170 .collect::<Vec<_>>()
171 .into();
172
173 let sample = &self.weight_mean + chol.dot(&z);
175 samples.slice_mut(s![i, ..]).assign(&sample);
176 }
177
178 Ok(samples)
179 }
180
181 fn cholesky_decomposition(&self, matrix: &Array2<Float>) -> Result<Array2<Float>> {
183 let n = matrix.nrows();
184 let mut l = Array2::zeros((n, n));
185
186 for i in 0..n {
187 for j in 0..=i {
188 if i == j {
189 let sum: Float = (0..j).map(|k| l[[i, k]] * l[[i, k]]).sum();
191 let val = matrix[[i, i]] - sum;
192 if val <= 0.0 {
193 return Err(SklearsError::NumericalError(
194 "Matrix is not positive definite".to_string(),
195 ));
196 }
197 l[[i, j]] = val.sqrt();
198 } else {
199 let sum: Float = (0..j).map(|k| l[[i, k]] * l[[j, k]]).sum();
201 l[[i, j]] = (matrix[[i, j]] - sum) / l[[j, j]];
202 }
203 }
204 }
205
206 Ok(l)
207 }
208}
209
210#[derive(Debug)]
212pub struct LargeScaleVariationalRegression<State = Untrained> {
213 config: LargeScaleVariationalConfig,
214 state: PhantomData<State>,
215 posterior: Option<VariationalPosterior>,
217 convergence_history: Option<Vec<Float>>,
218 feature_relevance: Option<Array1<Float>>,
219 n_features: Option<usize>,
220 intercept: Option<Float>,
221}
222
223impl Default for LargeScaleVariationalRegression<Untrained> {
224 fn default() -> Self {
225 Self::new()
226 }
227}
228
229impl LargeScaleVariationalRegression<Untrained> {
230 pub fn new() -> Self {
232 Self {
233 config: LargeScaleVariationalConfig::default(),
234 state: PhantomData,
235 posterior: None,
236 convergence_history: None,
237 feature_relevance: None,
238 n_features: None,
239 intercept: None,
240 }
241 }
242
243 pub fn with_config(mut self, config: LargeScaleVariationalConfig) -> Self {
245 self.config = config;
246 self
247 }
248
249 pub fn batch_size(mut self, batch_size: usize) -> Self {
251 self.config.batch_size = batch_size;
252 self
253 }
254
255 pub fn learning_rate(mut self, learning_rate: Float) -> Self {
257 self.config.learning_rate = learning_rate;
258 self
259 }
260
261 pub fn enable_ard(mut self, pruning_threshold: Float) -> Self {
263 self.config.prior_config.ard_config = Some(ARDConfiguration {
264 feature_precision_shape: 1e-6,
265 feature_precision_rate: 1e-6,
266 pruning_threshold,
267 enable_pruning: true,
268 });
269 self
270 }
271
272 pub fn memory_limit_gb(mut self, limit: Float) -> Self {
274 self.config.memory_limit_gb = Some(limit);
275 self
276 }
277}
278
279impl LargeScaleVariationalRegression<Trained> {
280 pub fn coefficients(&self) -> &Array1<Float> {
282 &self.posterior.as_ref().unwrap().weight_mean
283 }
284
285 pub fn coefficient_covariance(&self) -> &Array2<Float> {
287 &self.posterior.as_ref().unwrap().weight_covariance
288 }
289
290 pub fn feature_relevance(&self) -> Option<&Array1<Float>> {
292 self.feature_relevance.as_ref()
293 }
294
295 pub fn convergence_history(&self) -> Option<&[Float]> {
297 self.convergence_history.as_deref()
298 }
299
300 pub fn sample_predictions(
302 &self,
303 x: &Array2<Float>,
304 n_samples: usize,
305 rng: &mut impl Rng,
306 ) -> Result<Array2<Float>> {
307 let posterior = self.posterior.as_ref().unwrap();
308 let weight_samples = posterior.sample_weights(n_samples, rng)?;
309
310 let mut predictions = Array2::zeros((n_samples, x.nrows()));
311
312 for i in 0..n_samples {
313 let weights = weight_samples.slice(s![i, ..]);
314 let pred = x.dot(&weights);
315 predictions.slice_mut(s![i, ..]).assign(&pred);
316
317 if let Some(intercept) = self.intercept {
319 predictions
320 .slice_mut(s![i, ..])
321 .mapv_inplace(|x| x + intercept);
322 }
323 }
324
325 Ok(predictions)
326 }
327
328 pub fn predict_with_uncertainty(
330 &self,
331 x: &Array2<Float>,
332 ) -> Result<(Array1<Float>, Array1<Float>)> {
333 let posterior = self.posterior.as_ref().unwrap();
334
335 let pred_mean = x.dot(&posterior.weight_mean);
337
338 let mut pred_var = Array1::zeros(x.nrows());
340
341 for i in 0..x.nrows() {
342 let x_i = x.slice(s![i, ..]);
343 let var_contrib = x_i.dot(&posterior.weight_covariance.dot(&x_i));
344
345 let noise_var = 1.0 / posterior.noise_precision_rate; pred_var[i] = var_contrib + noise_var;
348 }
349
350 let pred_std = pred_var.mapv(|v| v.sqrt());
351
352 Ok((pred_mean, pred_std))
353 }
354}
355
356impl Fit<Array2<Float>, Array1<Float>> for LargeScaleVariationalRegression<Untrained> {
357 type Fitted = LargeScaleVariationalRegression<Trained>;
358
359 fn fit(self, x: &Array2<Float>, y: &Array1<Float>) -> Result<Self::Fitted> {
360 let (n_samples, n_features) = x.dim();
361
362 if n_samples != y.len() {
363 return Err(SklearsError::DimensionMismatch {
364 expected: n_samples,
365 actual: y.len(),
366 });
367 }
368
369 let mut posterior = VariationalPosterior::new(n_features, &self.config.prior_config);
371 let mut convergence_history = Vec::new();
372
373 let mut rng = if let Some(seed) = self.config.random_seed {
375 StdRng::seed_from_u64(seed)
376 } else {
377 StdRng::from_rng(&mut scirs2_core::random::thread_rng())
378 };
379
380 let mut current_lr = self.config.learning_rate;
382
383 for epoch in 0..self.config.max_epochs {
384 let epoch_elbo = self.run_epoch(x, y, &mut posterior, current_lr, &mut rng)?;
385 convergence_history.push(epoch_elbo);
386
387 if self.config.verbose && epoch % 10 == 0 {
388 println!("Epoch {}: ELBO = {:.6}", epoch, epoch_elbo);
389 }
390
391 if epoch > 0 {
393 let prev_elbo = convergence_history[epoch - 1];
394 let elbo_change = (epoch_elbo - prev_elbo).abs();
395
396 if elbo_change < self.config.tolerance {
397 if self.config.verbose {
398 println!("Converged after {} epochs", epoch);
399 }
400 break;
401 }
402 }
403
404 current_lr = self.update_learning_rate(current_lr, epoch);
406 }
407
408 let feature_relevance = if self.config.prior_config.ard_config.is_some() {
410 Some(self.compute_feature_relevance(&posterior))
411 } else {
412 None
413 };
414
415 Ok(LargeScaleVariationalRegression {
416 config: self.config,
417 state: PhantomData,
418 posterior: Some(posterior),
419 convergence_history: Some(convergence_history),
420 feature_relevance,
421 n_features: Some(n_features),
422 intercept: None, })
424 }
425}
426
427impl LargeScaleVariationalRegression<Untrained> {
428 fn run_epoch(
430 &self,
431 x: &Array2<Float>,
432 y: &Array1<Float>,
433 posterior: &mut VariationalPosterior,
434 learning_rate: Float,
435 rng: &mut impl Rng,
436 ) -> Result<Float> {
437 let (n_samples, _n_features) = x.dim();
438 let batch_size = self.config.batch_size.min(n_samples);
439
440 let mut total_elbo = 0.0;
441 let mut n_batches = 0;
442
443 let mut indices: Vec<usize> = (0..n_samples).collect();
445 indices.shuffle(rng);
446
447 for batch_indices in indices.chunks(batch_size) {
448 let batch_x = self.extract_batch_features(x, batch_indices);
450 let batch_y = self.extract_batch_targets(y, batch_indices);
451
452 let (elbo, gradients) = self.compute_natural_gradients(
454 &batch_x,
455 &batch_y,
456 posterior,
457 n_samples,
458 batch_indices.len(),
459 )?;
460
461 self.update_variational_parameters(posterior, &gradients, learning_rate)?;
463
464 total_elbo += elbo;
465 n_batches += 1;
466 }
467
468 Ok(total_elbo / n_batches as Float)
469 }
470
471 fn extract_batch_features(&self, x: &Array2<Float>, indices: &[usize]) -> Array2<Float> {
473 let mut batch_x = Array2::zeros((indices.len(), x.ncols()));
474 for (i, &idx) in indices.iter().enumerate() {
475 batch_x.slice_mut(s![i, ..]).assign(&x.slice(s![idx, ..]));
476 }
477 batch_x
478 }
479
480 fn extract_batch_targets(&self, y: &Array1<Float>, indices: &[usize]) -> Array1<Float> {
482 indices.iter().map(|&i| y[i]).collect::<Vec<_>>().into()
483 }
484
485 fn compute_natural_gradients(
487 &self,
488 batch_x: &Array2<Float>,
489 batch_y: &Array1<Float>,
490 posterior: &VariationalPosterior,
491 total_samples: usize,
492 batch_size: usize,
493 ) -> Result<(Float, VariationalGradients)> {
494 let scale_factor = total_samples as Float / batch_size as Float;
495
496 let expected_ll = self.compute_expected_log_likelihood(batch_x, batch_y, posterior)?;
498
499 let kl_div = self.compute_kl_divergence(posterior)?;
501
502 let elbo = scale_factor * expected_ll - kl_div;
504
505 let gradients = VariationalGradients {
507 weight_mean_grad: Array1::zeros(posterior.weight_mean.len()),
508 weight_precision_grad: Array2::zeros(posterior.weight_precision.dim()),
509 noise_precision_shape_grad: 0.0,
510 noise_precision_rate_grad: 0.0,
511 };
512
513 Ok((elbo, gradients))
514 }
515
516 fn compute_expected_log_likelihood(
518 &self,
519 x: &Array2<Float>,
520 y: &Array1<Float>,
521 posterior: &VariationalPosterior,
522 ) -> Result<Float> {
523 let _n_samples = x.nrows();
524
525 let pred_mean = x.dot(&posterior.weight_mean);
527 let residuals = y - &pred_mean;
528
529 let sum_squared_residuals = residuals.mapv(|r| r * r).sum();
531 let expected_noise_precision =
532 posterior.noise_precision_shape / posterior.noise_precision_rate;
533
534 let log_likelihood = -0.5 * expected_noise_precision * sum_squared_residuals;
535
536 Ok(log_likelihood)
537 }
538
539 fn compute_kl_divergence(&self, _posterior: &VariationalPosterior) -> Result<Float> {
541 Ok(0.0)
544 }
545
546 fn update_variational_parameters(
548 &self,
549 posterior: &mut VariationalPosterior,
550 gradients: &VariationalGradients,
551 learning_rate: Float,
552 ) -> Result<()> {
553 posterior.weight_mean =
555 &posterior.weight_mean + learning_rate * &gradients.weight_mean_grad;
556
557 Ok(())
561 }
562
563 fn update_learning_rate(&self, current_lr: Float, epoch: usize) -> Float {
565 match &self.config.learning_rate_decay {
566 LearningRateDecay::Constant => current_lr,
567 LearningRateDecay::Exponential { decay_rate } => {
568 current_lr * decay_rate.powf(epoch as Float)
569 }
570 LearningRateDecay::Step {
571 step_size,
572 step_factor,
573 } => current_lr * step_factor.powf((epoch / step_size) as Float),
574 LearningRateDecay::Polynomial { decay_rate, power } => {
575 current_lr * (1.0 + decay_rate * epoch as Float).powf(-power)
576 }
577 LearningRateDecay::CosineAnnealing { min_lr } => {
578 min_lr
579 + 0.5
580 * (current_lr - min_lr)
581 * (1.0
582 + (std::f64::consts::PI * epoch as Float
583 / self.config.max_epochs as Float)
584 .cos())
585 }
586 }
587 }
588
589 fn compute_feature_relevance(&self, posterior: &VariationalPosterior) -> Array1<Float> {
591 posterior.weight_precision_shape.clone() / &posterior.weight_precision_rate
593 }
594}
595
596#[derive(Debug, Clone)]
598struct VariationalGradients {
599 weight_mean_grad: Array1<Float>,
600 weight_precision_grad: Array2<Float>,
601 noise_precision_shape_grad: Float,
602 noise_precision_rate_grad: Float,
603}
604
605impl Predict<Array2<Float>, Array1<Float>> for LargeScaleVariationalRegression<Trained> {
606 fn predict(&self, x: &Array2<Float>) -> Result<Array1<Float>> {
607 let (pred_mean, _) = self.predict_with_uncertainty(x)?;
608 Ok(pred_mean)
609 }
610}
611
612impl Estimator for LargeScaleVariationalRegression<Untrained> {
613 type Config = LargeScaleVariationalConfig;
614 type Error = SklearsError;
615 type Float = Float;
616
617 fn config(&self) -> &LargeScaleVariationalConfig {
618 &self.config
619 }
620}
621
622impl Estimator for LargeScaleVariationalRegression<Trained> {
623 type Config = LargeScaleVariationalConfig;
624 type Error = SklearsError;
625 type Float = Float;
626 fn config(&self) -> &LargeScaleVariationalConfig {
627 &self.config
628 }
629}
630
631#[allow(non_snake_case)]
632#[cfg(test)]
633mod tests {
634 use super::*;
635 use scirs2_core::ndarray::Array;
636
637 #[test]
638 fn test_large_scale_variational_config() {
639 let config = LargeScaleVariationalConfig::default();
640 assert_eq!(config.max_epochs, 100);
641 assert_eq!(config.batch_size, 256);
642 assert_eq!(config.learning_rate, 0.01);
643 assert_eq!(config.n_mc_samples, 10);
644 assert!(config.use_natural_gradients);
645 }
646
647 #[test]
648 fn test_variational_posterior_creation() {
649 let prior_config = PriorConfiguration::default();
650 let posterior = VariationalPosterior::new(5, &prior_config);
651
652 assert_eq!(posterior.weight_mean.len(), 5);
653 assert_eq!(posterior.weight_covariance.dim(), (5, 5));
654 assert_eq!(posterior.weight_precision_shape.len(), 5);
655 }
656
657 #[test]
658 fn test_learning_rate_decay() {
659 let config = LargeScaleVariationalConfig {
660 learning_rate: 0.1,
661 learning_rate_decay: LearningRateDecay::Exponential { decay_rate: 0.9 },
662 ..Default::default()
663 };
664
665 let model = LargeScaleVariationalRegression::new().with_config(config);
666
667 let lr_epoch_0 = model.update_learning_rate(0.1, 0);
668 let lr_epoch_1 = model.update_learning_rate(0.1, 1);
669
670 assert_eq!(lr_epoch_0, 0.1);
671 assert!((lr_epoch_1 - 0.09).abs() < 1e-10);
672 }
673
674 #[test]
675 fn test_ard_configuration() {
676 let model = LargeScaleVariationalRegression::new()
677 .enable_ard(1e-6)
678 .batch_size(128)
679 .learning_rate(0.005);
680
681 assert!(model.config.prior_config.ard_config.is_some());
682 assert_eq!(model.config.batch_size, 128);
683 assert_eq!(model.config.learning_rate, 0.005);
684 }
685
686 #[test]
687 fn test_batch_extraction() {
688 let X =
689 Array::from_shape_vec((4, 2), vec![1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0]).unwrap();
690 let y = Array::from_vec(vec![1.0, 2.0, 3.0, 4.0]);
691
692 let model = LargeScaleVariationalRegression::new();
693 let indices = [0, 2];
694
695 let batch_x = model.extract_batch_features(&X, &indices);
696 let batch_y = model.extract_batch_targets(&y, &indices);
697
698 assert_eq!(batch_x.dim(), (2, 2));
699 assert_eq!(batch_y.len(), 2);
700 assert_eq!(batch_x[[0, 0]], 1.0);
701 assert_eq!(batch_x[[1, 0]], 5.0);
702 assert_eq!(batch_y[0], 1.0);
703 assert_eq!(batch_y[1], 3.0);
704 }
705
706 #[test]
707 fn test_model_creation() {
708 let model = LargeScaleVariationalRegression::new()
709 .batch_size(64)
710 .learning_rate(0.001)
711 .memory_limit_gb(2.0);
712
713 assert_eq!(model.config.batch_size, 64);
714 assert_eq!(model.config.learning_rate, 0.001);
715 assert_eq!(model.config.memory_limit_gb, Some(2.0));
716 }
717}