Module core

Module core 

Source
Expand description

Core types, enums, and structures for sparse Gaussian Process implementation

This module provides the foundational data structures and type definitions for sparse Gaussian Process approximations with SIMD acceleration.

Modules§

utils
Helper functions for sparse GP operations

Structs§

FittedSKI
Fitted structured kernel interpolation
FittedSparseGP
Fitted sparse Gaussian Process with learned parameters
OptimizationConfig
Configuration for sparse GP optimization
SparseGaussianProcess
Core sparse Gaussian Process structure with configuration parameters
StructuredKernelInterpolation
Structured Kernel Interpolation (KISS-GP) for fast structured GP inference
VariationalParams
Variational parameters for Variational Free Energy approximation

Enums§

InducingPointStrategy
Strategies for selecting inducing points in sparse GP approximations
InterpolationMethod
Interpolation methods for structured kernel approximations
PreconditionerType
Preconditioner types for iterative solvers
ScalableInferenceMethod
Scalable inference methods for large-scale sparse GP prediction
SparseApproximation
Available sparse approximation methods for Gaussian Processes
SparseGPError
Error types specific to sparse GP operations