Module computer_vision_kernels

Module computer_vision_kernels 

Source
Expand description

Computer vision kernel approximations

This module provides kernel approximation methods specifically designed for computer vision tasks, including spatial pyramid features, texture kernels, convolutional features, and scale-invariant methods.

Structs§

ConvolutionalKernelFeatures
Convolutional kernel features using random convolutions ConvolutionalKernelFeatures
FittedConvolutionalKernelFeatures
FittedConvolutionalKernelFeatures
FittedScaleInvariantFeatures
FittedScaleInvariantFeatures
FittedSpatialPyramidFeatures
FittedSpatialPyramidFeatures
FittedTextureKernelApproximation
FittedTextureKernelApproximation
ScaleInvariantFeatures
Scale-invariant feature transform (SIFT-like) kernel approximation ScaleInvariantFeatures
SpatialPyramidFeatures
Spatial pyramid kernel approximation for hierarchical spatial feature extraction SpatialPyramidFeatures
TextureKernelApproximation
Texture kernel approximation using Local Binary Patterns and Gabor filters TextureKernelApproximation

Enums§

ActivationFunction
ActivationFunction
PoolingMethod
PoolingMethod