Module anisotropic_rbf

Module anisotropic_rbf 

Source
Expand description

Anisotropic RBF Kernel Approximations

This module implements anisotropic RBF kernels and their approximations. Anisotropic kernels use different length scales for different dimensions, allowing the kernel to adapt to the varying importance of features.

§Key Features

  • Anisotropic RBF Sampler: Random features for anisotropic RBF kernels
  • Automatic Relevance Determination (ARD): Learn feature relevance
  • Mahalanobis Distance: Use learned covariance matrix
  • Robust Anisotropic RBF: Outlier-resistant anisotropic kernels
  • Adaptive Length Scales: Automatic length scale optimization

§Mathematical Background

Anisotropic RBF kernel: k(x, x’) = σ² exp(-0.5 * (x - x’)ᵀ Λ⁻¹ (x - x’))

Where Λ = diag(l₁², l₂², …, lₐ²) is the diagonal matrix of squared length scales.

§References

Structs§

AnisotropicRBFSampler
Anisotropic RBF kernel sampler using random Fourier features AnisotropicRBFSampler
FittedAnisotropicRBF
Fitted anisotropic RBF sampler FittedAnisotropicRBF
FittedMahalanobisRBF
Fitted Mahalanobis RBF sampler FittedMahalanobisRBF
FittedRobustAnisotropicRBF
Fitted robust anisotropic RBF sampler FittedRobustAnisotropicRBF
MahalanobisRBFSampler
Mahalanobis distance-based RBF sampler MahalanobisRBFSampler
RobustAnisotropicRBFSampler
Robust anisotropic RBF sampler with outlier resistance RobustAnisotropicRBFSampler

Enums§

RobustEstimator
Types of robust estimators for covariance RobustEstimator