Expand description
Anisotropic RBF Kernel Approximations
This module implements anisotropic RBF kernels and their approximations. Anisotropic kernels use different length scales for different dimensions, allowing the kernel to adapt to the varying importance of features.
§Key Features
- Anisotropic RBF Sampler: Random features for anisotropic RBF kernels
- Automatic Relevance Determination (ARD): Learn feature relevance
- Mahalanobis Distance: Use learned covariance matrix
- Robust Anisotropic RBF: Outlier-resistant anisotropic kernels
- Adaptive Length Scales: Automatic length scale optimization
§Mathematical Background
Anisotropic RBF kernel: k(x, x’) = σ² exp(-0.5 * (x - x’)ᵀ Λ⁻¹ (x - x’))
Where Λ = diag(l₁², l₂², …, lₐ²) is the diagonal matrix of squared length scales.
§References
Structs§
- AnisotropicRBF
Sampler - Anisotropic RBF kernel sampler using random Fourier features AnisotropicRBFSampler
- Fitted
AnisotropicRBF - Fitted anisotropic RBF sampler FittedAnisotropicRBF
- Fitted
MahalanobisRBF - Fitted Mahalanobis RBF sampler FittedMahalanobisRBF
- Fitted
Robust AnisotropicRBF - Fitted robust anisotropic RBF sampler FittedRobustAnisotropicRBF
- MahalanobisRBF
Sampler - Mahalanobis distance-based RBF sampler MahalanobisRBFSampler
- Robust
AnisotropicRBF Sampler - Robust anisotropic RBF sampler with outlier resistance RobustAnisotropicRBFSampler
Enums§
- Robust
Estimator - Types of robust estimators for covariance RobustEstimator